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Abstract
As the number of connected devices increases, known as the Internet of Things
(IoT), reliability and security become more important. C and C++ are common
programming languages for IoT devices, mostly due to their fine-grained memory
management and low runtime overhead. As these languages are not memory-safe
and memory management has proven to be difficult to handle correctly, problems
such as buffer overflows and dangling pointers are likely to increase as the IoT de-
vices become more prevalent. These problems can result in reliability and security
issues. In contrast to C and C++, Rust is a memory-safe systems programming lan-
guage that, just like C and C++, provides low runtime overhead and fine-grained
memory management. Potentially, Rust can reduce the number of unreliable and
insecure connected devices as a result of memory safety.

Tock is an embedded operating system implemented in Rust, and thus it is inher-
ently safe when it comes to memory management. In this thesis, we investigate if
Rust is suitable to develop device drivers. We implement four different device drivers
covering a range of functions and evaluate the energy consumption as well as the
execution time of our drivers compared to other current state-of-the-art embedded
operating systems. These device drivers enhance the usability of Tock for connected
devices. With the device drivers, we show that Tock introduces an overhead in
terms of execution speed but has a similar energy consumption in comparison to the
current state-of-the-art embedded operating systems. Despite the increased runtime
overhead, we argue that the benefits of Tock and Rust, i.e., increased reliability and
security along with similar power consumption exceeds the negative aspect. Finally,
we conclude that Rust and Tock are appropriate for developing device drivers for
IoT devices.

Keywords: IoT, Tock, Rust, Device drivers, Embedded systems, Bluetooth Low
Energy, Embedded Operating System
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1
Introduction

The number of connected devices rapidly increases as traditional physical systems
such as refrigerators, cars and toothbrushes are becoming connected [1]. Embedded
systems are most often the core of IoT devices as a result of their low power con-
sumption and low price. Internet of Things (IoT) or cyber-physical systems (CPS)
commonly describe such connected devices.

Resource constraints in embedded systems limit the number of suitable program-
ming languages [2]. The C programming language is a popular language to use when
programming embedded systems [2]. C introduces very little overhead in terms of
memory usage and runtime. In C, it is up to the programmer to explicitly handle
the memory management. Manual memory management has proven to be a difficult
task for many programmers to grasp and is often the reason for faulty programs [3].
An incorrect implementation of the memory management can result in increased
time and expenses when it comes to development because finding such bugs is hard.
In addition, when such bugs are not detected before deployment, it can result in
safety, security and privacy issues [4]. As an example, a faulty implementation, e.g.,
a buffer overflow vulnerability, can yield in memory corruption that in turn can
lead to unintended execution. Therefore, malicious parties can exploit such faulty
implementations to gain control of a system. A team of researchers demonstrated
an example of such an attack in 2011. The researchers exploited a buffer-overflow
vulnerability in the CD player of a car and acquired control of safety critical sub-
systems in the whole car [4]. This example shows that programming in C can lead
to dangerous results where subsystems such as braking and steering can become
attacked.

1.1 Problem statement

Embedded systems are known to have very limited resources but they still (in most
cases) require a runtime or operating system to simplify development as they are
becoming more complex. An operating system adds an extra layer of abstraction
to provide protection and enable several programs to run on the processor in an
efficient manner. C and C++ are the most common programming language in the
current state-of-the-art embedded operating systems, such as Apache Mynewt, Con-
tiki, ARM mbed and Zephyr. As the number of IoT devices increases so does the
usage of these operating systems. To keep the devices reliable and secure, it is essen-
tial that the implementations of the operating systems are correct. As the operating
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1. Introduction

system can be the host of many applications potential bugs can, in turn, make these
applications less reliable and secure. By implementing the operating system in C or
C++, the risk of introducing such critical bugs increases.

Mozilla introduced Rust [5] as an alternative to C in 2009. Rust is a systems
programming language with strong safety guarantees that prevents memory corrup-
tion. Rust has the potential to solve the problems that can occur when using C, e.g,
dangling pointers and buffer overflows. Tock [6] is an embedded operating system
developed in Rust. Currently, Tock is missing a Bluetooth low energy (BLE) stack
and encryption support. In most IoT devices BLE is a heavily used component that
requires encryption [7]. We introduce the following research questions of this thesis:

• Is Rust suitable for programming device drivers for embedded operating sys-
tems?

• How does an embedded operating system implemented in Rust compare to
current state-of-the-art implementations in C?

1.2 Contribution

This thesis contributes with the following:

1. Design of device drivers for Tock in Rust that enable communication via BLE,
true random number generator (TRNG), temperature sensor and AES encryp-
tion and decryption.

2. Implementation of the designed device drivers that take advantage of the run-
time that Tock provides.

3. Evaluation of Tock and some of the device drivers compared to current state-
of-the-art implementations in C.

1.3 Scope

Design and implementation of device drivers for the embedded operating system
Tock comprise the scope of this master thesis.

1.4 Method

This thesis strives to follow the design principles of Tock. These design principles
allow us to contribute with device drivers to Tock and merge them into the main
repository. By submitting the code to the main repository, the code community
should review it which probably will increase the code quality.

2



1. Introduction

1.5 Key results
The key results of this thesis are twofolded. First, we contribute with design and
implementation of device drivers to the open source embedded operating system
Tock. The device drivers are safe and reliable by relying on the safety guarantees
of Rust and Tock. We contribute with four device drivers: BLE, AES, TRNG and
a temperature sensor. Second, we provide comparisons between our device drivers
in Tock and the current state-of-the-art embedded operating systems. The main
results of the evaluation are:

• The power consumption for BLE in Tock is on par with or lower than the
other operating systems.

• The performance of the AES128 driver is significantly slower than the other
operating systems that rely on mbed TLS. Another implementation, Tiny-
Crypt does, however, perform way worse than Tock. The system calls in Tock
include, compared to the other operating systems, a significant overhead.

1.6 Thesis outline
The rest of this thesis consists of six additional chapters. Chapter 2 presents the
required background material for embedded systems, IoT devices, operating systems,
programming languages and Tock. Chapter 3 presents the related work. Chapter
4 presents and discusses potential designs of device drivers along with our designs
of the device drivers. Chapter 5 presents the implementation of the device drivers
in Tock. Chapter 6 presents an evaluation the implemented device drivers in Tock
compared to state-of-the-art embedded operating system device driver along with
a general discussion about Tock and Rust. Finally, Chapter 7 summarizes and
concludes the thesis.

3
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2
Background

This chapter introduces the reader to relevant topics regarding the thesis and it
is divided into 5 sections. Section 2.1 presents the concept of Internet of Things.
Section 2.2 presents a new safe systems programming language named Rust which
is an alternative to C and C++ when it comes to the development of Internet of
Things applications. Section 2.3 presents what an operating system is and what
is special with operating systems when it comes to Internet Of Things. Section
2.4 presents a safe operating system for the Internet of Things named Tock that
relies on the safety features of Rust. Finally, Section 2.5 presents an overview of the
Bluetooth Low Energy protocol, a slimmed version of Bluetooth protocol for low
power applications.

2.1 Internet of Things
The number of connected devices rapidly increase as our society gets more and
more connected [1]. The increase reflects mostly that traditional physical and em-
bedded devices are becoming connected. Previously, these systems did not have
wireless communication capabilities but are now equipped with chips that enable
wireless connectivity via several network communication protocols such as WiFi,
BLE, ANT+, and ZigBee. Most of the data that these systems generate are sensor
data. This data is available for further processing or simply transferred to other
devices. We commonly refer to these connected devices as Internet of Things (IoT)
and sometimes as Cyber-Physical-Systems (CPS). Example of such devices are:

• medical devices (e.g. pacemaker)
• wearables (e.g. smartwatch, fitness bracelets)
• smart homes (e.g. refrigerators, thermostats)
• connected cars

The characteristics of IoT devices are that they consist of embedded computers with
very limited resources, e.g., computing power, memory, and energy, and have ac-
cess to environmental sensors. The two main reasons for the limited resources are
cost and convenience. The average user would not like to spend two times as much
money for an electrical toothbrush due to a more powerful processor that enables
real-time analysis of the brushing. The other factor is convenience which relates to
power consumption. A typical end user would neither like a power cord connected
to the toothbrush nor having to charge it after each brush. Hence, the power con-

5



2. Background

sumption should be low so that the devices do not need external power. It should
also be able to run on battery for a very long time without replacement or recharging.

Embedded computers typically consist of an 8, 16 or 32-bit microcontroller with
RAM and flash in the magnitude of hundreds of kilobytes, and wireless network-
ing capabilities such as Bluetooth. Due to the low performance of the embedded
computers, one should carefully consider where to spend the resources. One such
consideration is the choice of programming language. Most high-level languages
such as Java and Python include a runtime overhead. Due to the low overhead of
C and C++, these are the main languages for developing embedded systems.

2.1.1 nRF51-DK

nRF51-DK is a development board designed for prototyping IoT applications with
BLE, ANT and 2.4 GHz radio capabilities. Two processors are present on the
nRF51-DK development board. One of them is a small interface processor that
uses a virtual COM-port over USB (UART) to program the main processor via an
external computer. The processor also provides debugging via SWD1. The other
processor is the main processor which handles all other tasks on the chip, e.g., pro-
vide all the functionality to access the hardware. This is an ARM Cortex-M family
processor that is common in the IoT industry. This processor comes from the ARM
Cortex-M family which is commonly used in the IoT industry. More specifically, it
is an M0 32-bit processor that operates with a 16 MHz crystal. The development
board also comes with 256 kB of flash and 32 kB of RAM. Apart from featuring
radio communication via the 2.4 GHz radio, AES encryption and decryption, error
detecting with CRC, temperature sensor, random generation, current measurement,
LEDs and push buttons are available and supported by the hardware2.

To give a greater understanding of what the aforementioned numbers mean in terms
of performance, Table 2.1 provides a simple comparison of common of the shelf
hardware and the nRF51.

Device CPU (GHz) RAM (MB)
Macbook Pro 2016 2.9 8192
Raspberry Pi 3 1.2 1024

Raspberry Pi Zero 1 512
nRF51822 0.016 0.016

Arduino UNO 0.016 0.032

Table 2.1: Hardware comparison

1https://www.arm.com/products/processors/serial-wire-debug.php
2http://infocenter.nordicsemi.com/pdf/nRF51_RM_v3.0.1.pdf
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2. Background

2.2 Rust
Rust [5] is a relatively young systems programming language. A systems program-
ming language supports the development of operating systems and software that re-
quires direct access to the hardware. The Rust project started out as a hobby project
by a former Mozilla employee named Graydon Hoare in 2006. Mozilla adopted the
language and has released it as an open source project [5]. The main motivation
for Mozilla’s interest in Rust has been to reduce the number of bugs and security
vulnerabilities in their web browser engine Gecko. Roughly 50 % of all security
vulnerabilities detected in Gecko are related to memory corruption namely use after
free, array out-of-bounds access, or integer overflow [3]. Incorrect implementations
of memory management, mostly in C and C++, cause these issues and bugs, that
are generally hard to track and debug. The developers at Mozilla are experienced
C++ developers with access to advanced static analysis tools. Despite this, bugs
related to buffer overflows and dangling pointers occur, which show the severity of
the problem with manual memory management. Rust is a safe programming lan-
guage, i.e., it handles memory management in a safe matter. Hence, by using Rust
Mozilla can reduce the number of problems related to faulty memory management
and concurrency. To further reduce the number of bugs and security issues, Mozilla
Research develops a web browser engine written in Rust, named Servo [3] that takes
advantage of the powerful type system in Rust.

Rust is a statically and strongly typed language, i.e., data types of variables are
known at compile time and specified by the programmer or inferred by the com-
piler [5]. Bugs and errors are therefore easier to find and correct early in the devel-
opment process. Dynamically typed languages, e.g., Python and Ruby do not have
a static analysis of the source code. This means that detection of type errors is more
likely to occur at runtime in dynamically typed languages than in statically typed
languages but has no impact on logical errors [8]. A fundamental design decision
of Rust is the zero cost of abstractions, where Rust prioritizes checks at compile
time over runtime. To enable zero cost abstractions without significant checks at
runtime, Rust relies on its type system [5] instead of using a garbage collector. Rust
prevents a set of issues: 1) race conditions, 2) use-after-free 3) integer overflow,
4) buffer overflows and 5) iterator invalidation. Memory management is therefore
safe in Rust with strong safety guarantees by default. In contrast, in languages
that are not memory safe, e.g., C and C++, the compilers cannot detect memory
corruption faults.

Furthermore, Rust is also a multi-paradigm language that aims to combine features
from both imperative languages and functional languages. It provides high-level
features such as generics, type-classes, high-order functions, algebraic data types
and anonymous functions, as well as statements with side-effects and fine-grained
memory control as C/C++ but in a memory safe matter.
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Due to the absence of a garbage collector, the execution is predictable without
additional runtime overhead that a garbage collector introduces. Predictable execu-
tion and low runtime overhead are important features in applications with limited
resources and timing constraints.

2.2.1 Ownership
Variables in Rust are immutable by default, i.e., modifications of the variables are
not possible. The “let“ keyword declares variables and “mut” declares that modifica-
tion of the data is possible, i.e., a mutable variable. A modification of an immutable
variable generates a compilation error. The variables can be either explicitly typed
or the compiler can determine the type which Listing 2.1 shows.

Listing 2.1: Variable bindings
1 // type-inferred
2 let a = 1;
3 // explicitly typed
4 let b: u32 = 1;
5 // mutable variable
6 let mut c: 1;
7 // compilation error
8 a = 1337;

Rust’s object model relies on a concept named ownership where each resource has
exactly one owner. The ownership model enforces that a resource can have exactly
one variable binding. A variable binding that moves to a new context is no longer
valid, i.e., it becomes consumed. Listing 2.2 shows an example where the ownership
of the variable “str” moves from the main function to the function “func”. The
compiler generates an error if anyone tries to access a moved variable, in this case,
“str” which line 7 shows.

Listing 2.2: Ownership move (move semantics)
1 // owned in the context
2 fn main {
3 let str = "HelloWorld".to_string();
4 // move i.e. ownership is transferred to the function func
5 func(str);
6 // compilation error: value moved
7 print!("str: {}", str);
8 }

Another important aspect regarding ownership is that each variable has a scope for
how long it is the bound to the resource. Unless the ownership of a resource changes,
resources are freed once their bound variables go out of scope. In Listing 2.3 we
show an example where the variable “b” is deallocated once the program exits the
block on line 8.
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Listing 2.3: Variable scope
1 // owned in the context
2 fn main {
3 let a: &usize;
4 // local scope
5 {
6 let b: usize = 1337;
7 a = &b;
8 }
9 // b gets deallocated here

10 // compilation error
11 print!("a: {}", a);
12 }

As Rust keeps track of ownership at compile both programs in Listing 2.2 and List-
ing 2.3 generate errors. However, for primitive types, such as integers the ownership
does not change since Rust can simply copy those types.

2.2.2 Borrowing
To enable sharing of objects without transferring ownership, Rust uses borrows.
Fundamentally, a borrow is a reference to the owned variable, “&” character declares
a borrow in Rust. Any borrow must have a scope that is not exceeding the owner.
There are two types of borrows, immutable and mutable borrows. A resource can
have either an arbitrary number immutable borrows or exactly one mutable borrow.
However, it is only possible to have one of the borrow types at the same time. Listing
2.4 presents a valid program that passes an immutable borrow to the function “func”
and then prints the string. This is a modification to the program in Listing 2.2.

Listing 2.4: Immutable borrow
1 // owned in the context
2 fn main {
3 let str = "HelloWorld".to_string();
4 // immutable borrows of str
5 func(&str);
6 // ok
7 print!("str: {}", str);
8 }
9

10 fn func(s: &String) {
11 print!("{}\r\n", s);
12 }
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2.2.3 Lifetimes
A common problem while programming in C and C++ is dangling pointers. Dan-
gling pointers are pointers that point to a variable that no longer exists. To avoid
dangling pointers can be quite a complex task, especially when passing references
around to different entities, then it can become hard to keep track of whether a
reference is valid or not. Rust relies on the concept called lifetime to cope with for
example dangling pointers. Lifetimes apply to both owned variables and borrows.
Rust utilizes lifetimes to deduce whether a given variable binding points to a valid
resource or not and thus, prevents errors regarding memory corruption. Listing 2.5
illustrates how lifetimes work in Rust.

Listing 2.5: Lifetimes in Rust
1 fn main() {
2 let mut i = 1; // ‘i‘ lifetime starts.
3 {
4 let x = 5; // ‘borrow1‘ lifetime starts
5 i = x // error, x has a shorter lifetime than i
6 } // ‘x‘ lifetime ends
7 } // ‘i‘ lifetime end

Most often, the compiler can infer the lifetime, but sometimes the programmer must
explicitly annotate the lifetimes. Complex data types such as structs, typically need
manual lifetime annotations compared to primitive data types such as integers.
An example when the programmer must manually assign the lifetime is when a
function returns a reference to a variable. The following describes the syntax for
assigning lifetime to a reference in a function: foo<’lifetime> bar(‘lifetime variable:
&some_struct){ . . . }

2.2.4 Unsafe Rust
As Rust is a systems programming language, it is essential that the programmer
can circumvent the type system to enable, for example, dereferencing raw memory,
inline assembly code or invoke C code which are tasks that are common in systems
programming. Rust provides such functionality by another language inside of Rust
namely “unsafe Rust” and it provides the same functionality as ordinary Rust with
a few exceptions. From the documentation of Rust [9], one can read that unsafe
Rust allows:

• Dereferencing a raw pointer
• Calling an unsafe function or method
• Accessing or modifying a mutable static variable
• Implementing an unsafe trait

These features make unsafe Rust not memory safe and should be used with care.
Unsafe Rust basically tells the compiler that the programmer is aware of the risk
but must perform an operation that is not supported by ordinary Rust. To perform

10



2. Background

one or more unsafe operations in Rust, the code must reside in an unsafe block.
An unsafe block is an ordinary code block with the unsafe annotation. To clarify,
the compiler still provides unsafe Rust with all safety checks, except from the four
aforementioned operations.

2.3 Operating systems

An operating system is a program that handles a computer system’s hardware re-
sources and provides a platform for user applications to run on [10]. The operating
system acts as an intermediate device between hardware and user applications. Its
responsibilities include utilizing hardware resources, execute user applications and
provide protection mechanisms. However, there exist no clear definition what com-
prises an operating system. Thus, the size of the operating systems can differ from
a few kilobytes to several gigabytes. Different designs of operating systems achieve
distinctive goals, e.g., high performance, low memory footprint or high reliability
and security. Therefore, different designs of operating systems serve different pur-
poses. The kernel is the common divisor of all operating systems, as all operating
systems have one.

2.3.1 Kernels

The core of an operating system is the kernel. A kernel has the highest privileges in
an operating system and thus, also full control. Its main responsibility is to handle
memory, determine which instructions the CPU should execute (scheduling) and
handle peripheral devices, e.g., disks, displays, and keyboard. In most operating
systems, the first part to load at boot-up is the kernel. The kernel remains in RAM
during the entire execution, hence the size of the kernel is of great importance.
Moreover, the kernel’s address space is, in most operating systems, located in a
protected region to which only entities with the highest privileges are granted access.
Hardware determines whether an entity is granted access to the protected address
space or not. Changing between operating modes is known as context switching.
Processes interact with the kernel via system calls. A system call is an abstraction
for a user space application to use resources, for example, interact with I/O without
direct access to the hardware. The system call triggers a context switch from user
mode to privilege mode. Many operating systems use software-based interrupts
(traps) to trigger a context switch. Typically, the kernel and user applications are
operating in different address spaces. Therefore, a system call will also include an
address space switch. Consequently, the overhead of system calls can be significantly
higher and because of this, some operating systems run device drivers with full
privileges to avoid the overhead that comes with it. There are mainly two different
architectures of kernels when it comes to operating systems, monolithic and micro.
The following sections explains the key aspects and the differences between the two
kernel architectures.
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2.3.1.1 Monolithic kernels

Monolithic kernels were the first kind of kernels. In 1964, IBM developed one of the
first monolithic kernels for the operating system IBM System/360 [11]. In general, a
big and complex static binary with functionality such as device drivers, process and
memory management, resource allocation and interrupts characterize the monolithic
kernel. It is also typical for a monolithic kernel to execute all operations in the same
address space with the highest privileges. With this design there is a single point
of failure where potentially a single bug can crash the entire operating system or
malicious users can exploit it to gain access to the kernel. However, the kernel in
Windows and Linux, which are two of the most popular operating systems, both
build on top of a monolithic kernel. As an example of the size of a monolithic
kernel, the Linux kernel is 20 million lines of code [12]. The main drawbacks of the
monolithic kernels are threefolded: 1) the kernel size 2) lack of extensibility and 3)
maintainability [13]. However, Linus Torvalds argues in a kernel debate3 that it is
easier to debug and develop a monolithic kernel compared to other architectures.

2.3.1.2 Microkernel

Microkernels are the direct opposite of monolithic kernels. The goal of a microkernel
is to have as small kernel as possible. Apple’s operating system for mobile devices,
iOS, builds on top of the L4 microkernel [14]. The biggest kernel size in the L4
family consists of 37.6 thousand lines of code [15]. Thus, it is significantly smaller
than the monolithic kernel of Linux. A microkernel is only responsible for the core of
the operating system and should at least manage address space, inter-process com-
munication (IPC) and thread management [16]. Other services, known as servers,
e.g., device drivers, file system, memory management, network stack and user ap-
plications, execute as separate processes. These processes are traditional operating
system processes, i.e., they have one or more stacks, heap, data, and text segment.
Furthermore, the fault isolation that a process has, in terms of independent execu-
tion, is valid for servers as well. A server can then potentially crash and then restart
without affecting the kernel. Consequently, it makes the microkernel more reliable
and secure, but the kernel itself is still a single-point-failure. A smaller kernel is also
likely to contain fewer bugs as it contains less code according to previous studies
on software fault density [17]. Microkernels require more resources than monolithic
kernels since each server executes as a separate process and that the microkernel
communicates with other services via IPC instead of invoking them directly via
function calls. Moreover, the communication via IPC is far more expensive than
function calls. Thus, it results in more context switches and worse performance
than monolithic kernels. The first generation of microkernels had an implementa-
tion that favored high extensibility which included a big overhead as a result. As
an example, one of the first microkernels Mach had 800 cycles (≈ 500 instructions)
of pure overhead in its context switch [16]. However, Liedtke [16] showed that there
is no fundamental issue with the microkernel itself rather that the implementation
is highly architecture dependent.

3 http://www.oreilly.com/openbook/opensources/book/appa.html
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2.3.2 Embedded OS
Embedded systems are systems that serve a specific purpose in a larger system.
One such example is all the computers that handle the maneuvering, e.g., braking
and steering, of a car. A microprocessor is most often the core in such systems and
they typically have limited resources and low performance. Moreover, the design of
embedded systems most often serves specific purposes, compared to general-purpose
systems. Due to the nature and location of the systems, e.g., placed in an integrated
system without (easy) access, physical interaction is most often not possible or very
limited. The limited access and in many cases a large number of devices make
restarting the device inconvenient, which otherwise can be an easy way to recover
from an erroneous state. This makes reliability more important for an embedded
operating system than for a general-purpose operating system. Thus reliability is
favored in the design of an embedded system rather than performance.

To develop a secure and reliable operating system for embedded systems is hard.
One aspect that increases the difficulty is that embedded devices typically does not
have a memory protection mechanism such as memory management unit (MMU).
Thus, embedded operating systems cannot rely on virtual address spaces as protec-
tion. For example, in a general-purpose operating system, once a process tries to
write to memory outside its dedicated memory segment, it generates a segmentation
fault. Contrary, in an embedded operating system, illegal writes to critical memory
addresses are possible and can crash the system. Thus, there is no protection that
prevents writing to critical addresses and as a result, the programmer must pay
extra attention to avoid this. A possible scenario is that the programmer overwrites
the program counter and unexpected executions are possible.

Real-time and embedded operating systems are closely related and commonly used
interchangeably. However, a real-time operating system (RTOS) can handle applica-
tions with real-time constraints where specific deadlines must be met. For example,
in a car, once the driver presses the breaks the task of breaking the car must start
within a certain time frame. In this thesis, there is a clear distinction between an
RTOS and an embedded operating system. By embedded operating system we refer
to an operating system without real-time constraints.

2.4 Tock

Tock [6] [18] is an open source embedded operating system developed in Rust for
ARM Cortex-M based devices. The main contributors of Tock are researchers from
universities in the United States where a handful commits full time to the project.
A couple of the contributors have also been involved with TinyOS [19] which is a
well-known embedded operating system. By using Rust, Tock aims to be safe in
terms of memory management and supports event-based multitasking. The design
goals of Tock are that the operating system should require very little resources, as
most embedded operating systems, and at the same time provide high security and
reliability.
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Figure 2.1: Tock architecture. The box at the bottom is the Tock kernel. Inside it, the
black boxes are the trusted modules and the white boxes are untrusted. Trusted means that the
modules are allowed the unsafe keyword in Rust and untrusted are not. The stacks, located at
the top are processes, user space processes, which are executed as separate processes within Tock
which have their own grant, heap, stack, data, and text. Furthermore, processes are restricted by
the use of MPU and thus cannot access kernel memory. Figure adapted from Tock Design by Tock
https://www.tockos.org/documentation/design. Reprinted with permission.

2.4.1 Kernel

Tock’s kernel architecture follows the microkernel design [18]. The kernel consists of
two parts, one core, and several capsules and Figure 2.1 visualizes the architecture
of Tock. It is the core that is responsible for the critical tasks of the operating
system, e.g., interaction with the hardware and scheduling of processes, and thus
it is relatively small. The core is the only part of the operating system which
can and must, use the unsafe keyword of Rust to fulfill its responsibilities. By
containing unsafe code, it is up to the programmer to verify the correctness of the
code, i.e., Tock regards the core as trusted. Capsules are the other part of the
kernel and contain implementations for device drivers and non-system-critical tasks.
Tock does not trust capsules but they can communicate with the core and other
capsules to accomplish their tasks. Rust’s type system guarantees memory isolation
between capsules. This mimics the goal of isolated processes, i.e., they are safe and
cannot corrupt other capsules. Furthermore, capsules do not introduce any runtime
overhead while they still enable secure drivers by checks at compile time. However,
a capsule can in fact crash, but this is very unlikely. What is more troublesome is
that nothing prevents capsules from starving the kernel. As an example, capsules
characteristically implement device drivers such as Bluetooth and timers which rely
on functionality from the core, e.g., radio access and usage of a real-time clock. To
make capsules available to the rest of the system, e.g., user processes and other
capsules, Tock initiates and configures them at boot time.
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2.4.2 Userland
Userland contains processes that run with limited privileges outside the kernel [18],
in most cases as user applications. However, it is also possible to put services as
separate processes. In the case where a process crashes, it can restart without in-
terfering with the kernel. Tock supports execution of several processes concurrently.
It is also possible to load processes at runtime without restarting the kernel. Appli-
cation developers commonly create user applications or services that utilize device
drivers and modules provided by the kernel. Examples of user applications are
toggling LEDs, reading environmental sensors and utilizing both cryptography and
radio communication.

Compared to general-purpose operating systems, Tock does not provide the no-
tation of virtual memory. The absence of virtual memory is because Tock is based
on the ARM-Cortex-M architecture, which does not provide an MMU. MMUs are
known to consume a lot of energy and require lots of memory, which motivates the
design choice to not include it.

Tock enables development of services and user applications in the most programming
languages that support Position Independent Code (PIC) and the ARM Cortex-M
architecture family. However, currently, C and C++ are the most common lan-
guages for writing user applications. Libraries are available when programming user
applications in Tock and one can use most of the C standard libraries provided
by NewLib. NewLib aims to enable most common C libraries but for embedded
systems [20]. Processes can communicate with the kernel via system calls (further
described in Section 2.4.3) and between themselves via inter-process communication
(IPC).

2.4.3 System calls
This section describes the different system calls available in Tock and their typical
use cases. The system calls in Tock enable user space processes to interact with
the kernel via a dedicated interface and decouples the user space processes from the
kernel.

2.4.3.1 Command

The command system call instructs or commands the kernel to execute a specific
task [18]. This system call provides an interface for sending commands with limited
data to the kernel. Each command takes three arguments, driver number, command
number, and subcommand number. Together these arguments instruct the kernel
what operation to execute. The first argument, driver number, specifies which driver
that should handle the request. Drivers can accept several commands and hence each
command must have a unique command number which is the second argument.
The third argument, subcommand, provides more fine-grained instructions to the
command. One example of a command could be to toggle a LED. Firstly, the kernel
deduces which driver to call, indicated by the driver number. Once the kernel has
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assigned the task to the correct driver, the capsule will execute the desired command
specified by the command number, in this case, toggle the LED. Finally, the capsule
commands the LED corresponding to the last argument to blink.

2.4.3.2 Allow

The allow system call enables sharing of data between the userland and the kernel
space [18], i.e., allow the kernel to use memory allocated by the user space process.
Applications require in many cases a return value or a result from the kernel to
make the application more interactive, i.e., read sensor data and present it to the
end user. Like the command call, a driver number specifies the driver and an allow
number specifies the specific allow call. Additionally, a pointer to a predefined buffer
specifies where the kernel should either read or write data from and to the user space
process respectively. Since the pointer does not contain any additional information
such as the size of a buffer, the size of the buffer is also provided in the system
call. A common scenario is to combine the allow and command calls. The allow call
first defines where to store the result. With a command call, the user space process
instructs the kernel, for example, to read sensor data to the “allowed” buffer. In
this way, the user space processes can share data with the kernel.

2.4.3.3 Subscribe

The subscribe system call assigns a callback function, defined in the user application,
for the kernel to call once it reaches some specific criteria [18]. This system call
enables the user space process to continue to execute while waiting for a result or
response from the kernel. The subscribe call carries, besides the driver number and
subscribe number, a pointer to a function, i.e., a callback function, defined by the
user space process. As the kernel assigns the correct capsule to manage the system
call, it also stores the callback. Once some specific criteria or state is meet or reached
in the kernel, it fires the callback. Delays and timers typically utilize the subscribe
call. One example is to delay the execution of a function. As the kernel’s clock
reaches the specified delay, it fires the callback.

2.4.3.4 Yield

The yield system call suspends the current process [18]. In cases where the process
is dependent on the work of the kernel, e.g., waiting for I/O to complete, the kernel
can suspend the process while the process waits. The scheduler will not schedule
the process until it receives a callback from the kernel. Hence, a yield command is
dependent on the subscribe call.

2.4.3.5 Memop

Memop provides information about the process itself that enables expansion of the
process size, during runtime [18]. There are two ways to expand the process size.
The first way is to specify the number of extra bytes for the expansion. The second
method is to specify the end of the requested memory segment, i.e., from one memory
address to another.
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2.4.4 System call data flow
This section explains the data flow from a user space process to the kernel. First, the
user space process, i.e., a process, invokes a system call. The scheduler continuously
runs an event loop which checks for events, e.g., interrupts and system calls. As
the scheduler detects the system call it also classifies it, i.e., which kind of system
call it is. Once classified as a supported system call, the kernel assigns the system
call to the corresponding capsule, determined by the driver number. Capsules use
the supplied command number to take appropriate action, e.g., turn on a LED.
To determine which LED to turn on, the capsules use the additional subcommand
number. The capsules have access to the hardware via a hardware interface layer.
Through this interface, the capsule can indirectly modify hardware, i.e., turn on the
LED, and finalize the system call. As the system call finalizes, the kernel signals to
the user space process whether the call was successful or not. Figure 2.2 illustrates
the data flow from the start of a system call to its end. Red boxes illustrate code
that may use the unsafe keyword in Rust, e.g., perform unsafe operations. With
Tock terminology, this code is trusted. Green boxes illustrate code that must not
use the unsafe keyword in Rust. Hence, Rust enforces all safety guarantees, and
with Tock terminology this code is untrusted.

2.4.5 Example of user application
Programs that interact with the kernel can consist of several system calls. By
combining different system calls, the kernel can read and write data from and to
a user application respectively, without halting the user application. The following
is a description of the system calls that construct a simple encryption application
(assumed that the encryption key is preconfigured):

1. Subscribe call - Specifies the callback function that the kernel should fire
once it finishes the encryption. The callback function can, for example, print
the encrypted data.

2. Allow call - Shares a buffer with the kernel to enable it to read a buffer. In
this scenario, the buffer contains the plaintext.

3. Command call - Instructs the kernel to start the encryption operation.
As the encryption operation starts, the kernel reads the plaintext into a buffer owned
by the kernel. The kernel encrypts the buffer and writes the ciphertext back to the
shared buffer. Once this operation finishes, the kernel fires the callback. In the user
application, the callback function finally reads the buffer and prints the encrypted
plaintext, i.e., ciphertext.

2.5 Bluetooth Low Energy
Bluetooth is a standard for radio communication which evolved to replace wired
serial connections. Bluetooth low energy (BLE) is a version of Bluetooth that is
suitable for low powered and inexpensive devices with small sizes and short ranges
of operation [21]. Today, many devices feature Bluetooth. To transfer files, stream
music and control remote devices are typical use cases of Bluetooth. Bluetooth is an
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Figure 2.2: Tock system call. Showing the interaction flow upon a system call from a
user space process to the Tock kernel. The blue box at the bottom is the user process outside the
Tock kernel and the big gray box is the Tock kernel. Inside the Tock kernel, red boxes are the
trusted modules and green boxes are the untrusted modules. The return code is returned to the
user space process after the Tock kernel has handled the system call and it is either a success or
an error code.

ad hoc protocol since it does not rely on any external infrastructure. An example
of a protocol that requires preexisting infrastructure, i.e., the opposite of ad hoc,
is WiFi. A router is required in order to enable communication between devices
over WiFi. Communication between devices over WiFi requires a router. On the
contrary, to initiate and utilize the Bluetooth protocol, the only requirements are
two or more devices that can use the Bluetooth protocol, hence the description as an
ad hoc protocol. Bluetooth does not require additional configuration or installation
if drivers and hardware are available for the devices that should communicate. This
design makes it fast and easy to setup connections between different devices.

The Bluetooth’s Special Interest Group (SIG) provides standards that all variants
and versions of Bluetooth must follow. This standard defines everything from dif-
ferent layers in the protocol stack to how certain devices shall communicate. For
example, the standard provides details of how devices such as heart rate monitors
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and temperature sensors shall communicate. It also defines the format of data, e.g.,
if sensor data should contain a timestamp or not. By following these standards,
it becomes easy to connect independent devices. Designing an application that ac-
quires heartbeats from a heart rate sensor does not require any prior knowledge
about the actual hardware.

There are two common configurations of BLE devices, broadcasters and scanners.
Broadcasters are devices with a single purpose to only send advertisements, with
or without data. A typical scenario where a broadcaster is sufficient is in cases
where the device should send data to multiple devices and exchange of data is not
necessary. Scanners are the counterpart of broadcasters, i.e., they are the ones to
receive or scan for advertisements. It is possible to change the configuration, e.g., a
swap between the broadcaster and scanner configuration, of the device at runtime.
This enables a device to start out as an advertiser, which announces that it is pos-
sible to connect to it, and then change the configuration so that it can have direct
communication with a single device. Connections between devices provide a private
channel for devices to communicate through. To establish a connection, the adver-
tiser must advertise that it is a connectable device. As another device recognizes
the advertising device, it can send a connection request. The two devices establish
a bidirectional connection once the advertiser accepts the request [7].

The BLE protocol can use 40 different channels for transmissions and they span
from 2402 MHz to 2480 MHz. Between each channel, there is a 2 MHz separa-
tion. Channel hopping prevents congestion and interference from other devices in
the network. Upon connection, the devices share the settings for channel hopping
to enable communication on the same channels. Advertisements use a simple form
of channel hopping. To improve the chances of that advertisements reach their des-
tination, the broadcaster sends advertisements on three channels “simultaneously”.
The only delay between the transmissions depends on how big the payload is and
how fast it can send one packet after the other. The three advertisement channels
are 37, 38 and 39. Channel 37 is the first channel in the channel span and 39 the
last, 38 is roughly in the middle. The placement of the channels further reduces
interference from other devices and protocols. Between each advertisement cycle,
there is a 10 milliseconds to 10 seconds delay dependent on the application. This
process continues until the advertisement stops.
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Figure 2.3: BLE advertisement packet structure. The figure illustrates a BLE
packet specified by SIG. It describes the different layers from over the air structure to the differ-
ent data structures to transmit in the BLE packet. The payload can consist of zero or several
advertisement structures as long as it does not exceed 31 bytes.

2.5.1 Packet structure
To comply with the BLE standard, one must follow the packet structure of Figure
2.3. Basically, each packet can be explained with the three layers of the figure.
The over the air packet must consist of a preamble, address, PDU type and a
CRC field. The address specifies which address to send to. The address could
either be the address of a receiver or the predefined address for BLE advertisements,
i.e, 0x8E89BED6. PDU type is the type of the BLE packet which in the case of
advertisements, consists of a header and a payload. The header describes the entire
BLE packet. PDU type defines the behavior of the device, for example, if it is
connectable or not. RFU are reserved bits for further development. TX and RX
define if the addresses are public or random. The payload can hold zero or several
advertisement structures. Each structure consists of a length, type, and data. Figure
2.3 demonstrates the package when one advertisement structure is present.

20



3
Related work

This section consists of two parts. First, we compare and discuss Tock to a general-
purpose operating system, Singularity, that has a design which favors reliability and
security. Second, we discuss Tock in comparison to another IoT operating system,
Contiki.

3.1 Singularity
Singularity [22] is a research operating system developed by Microsoft Research.
The authors argue that the usage of computers is different today compared to back
in the 1960’s and 1970’s, e.g., networking plays a bigger role today. Furthermore, the
authors claim that modern commercial operating systems have not been adopted to
ensure sufficient protection mechanism for the end-user. The design of Singularity
favors dependability over performance. By relying on a microkernel architecture,
Singularity can keep the kernel as small as possible which increases dependability as
the trusted computing base becomes smaller. It enables other modules to execute
outside the kernel as separated processes such as device drivers. For most commer-
cial operating systems, e.g., Linux and Windows, the goal is rather to provide high
performance to the end user.

Most parts of Singularity are based on the programming language Sing# [23]. Sing#
is type-safe with a garbage collector designed and implemented specifically for Sin-
gularity. Sing# extends C# and Spec# and supports low-level programming, i.e.,
systems programming, which is essential for developing system-level software. Sin-
gularity introduces the following architectural features:

• Software-Isolated Processes (SIPs)
• Contract-Based Channels
• Exchange heap
• Manifested-Based Programs (MBP)
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SIPs are like traditional operating-system processes which consist of text, data,
heap and one or more threads (stacks). SIPs differ from traditional processes in
three major ways:

• SIPs rely on software rather than hardware for protection and safety.
• Memory between SIPs is not shared.
• SIP operations are restricted.

Sing# provides static verification at compile-time, i.e., it ensures that a SIP cannot
perform any illegal operations that violate the type-system. For instance, if a SIP
tries to operate outside its dedicated memory segment it will generate a compiler
error instead of a run-time error, e.g., segmentation fault. Each SIP has its own dis-
joint heap to ensure that a SIP cannot overwrite another SIP’s heap. This ensures
that a SIP can only operate in its dedicated memory segment. SIPs operations are
highly restricted. Prohibited operations include dynamic loading of libraries, shar-
ing of memory and self-modifying code. The authors argue that such operations are
inherently dangerous and thus excluded them. These restrictions also simplify the
static verification.

Exchange heap is a specific heap for the SIPs to enable sharing of memory outside
the SIPs. The regular SIP heap is private, i.e., it is not shared with other SIPs.
Thus, the exchange heap enables IPC between SIPs and other parties. Pointers
within the exchange heap can only point to data inside the exchange heap itself,
ensured by static verification. By only allowing access to a single thread at the
time, the exchange heap provides mutual exclusion. Linear types are advanced
type-system features that ensure that a resource can only have exactly one owner
at the time, which in turn ensures correctness of the exchange heap. Thus, static
verification validates data as well as the mutual exclusion for the exchange heap.
The ownership of the exchange heap transfers by data exchange. As an example,
when the SIP that owns the exchange heap sends data to a receiving SIP, the sending
SIP loses ownership to the receiving SIP. Furthermore, this design does not intro-
duce any overhead by copying the actual data as it relies on pointer passing to the
exchange heap.

Contract-based channels provide IPC between SIPs and are based on the ex-
change heap. A channel is a bi-directional message buffer with exactly two end-
points. The endpoints are asymmetric where they are responsible for receiving and
transmitting data respectively. A contract, on the other hand, is a set of rules that
specifies how two entities can communicate with each other. For example, a contract
can specify protocol states and message declarations. In Sing# these contracts are
a part of the language which the compiler verifies at compile time.
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MBP are programs defined by a manifest. The manifest describes the program
in terms of hardware resources and dependencies on other programs. No code or
program can execute in Singularity without a manifest. The manifest verifies the
program prior to execution, thus prevents interference between programs and guar-
antees the availability of hardware.

3.1.1 Discussion

Singularity and Tock are similar in the sense that they are both designed and im-
plemented to favor reliability and safety. Their kernel architectures are also closely
related as they are both based on the micro-kernel architecture to decouple the kernel
from other modules such as device drivers. Additionally, the type-safe programming
languages in both of the operating systems further reduce faulty implementations
of memory management.

The biggest difference between Singularity and Tock is probably their goals when
it comes to system requirements. Tock must not require many resources, which
disqualifies features such as a resource demanding garbage collector. As Singularity
“competes” with other general purpose operating systems more resources are possi-
ble to expect from the system. Consequently, Singularity can rely on Sing# which,
in turn, relies on a garbage collection. As another consequence, device drivers have
been designed to be isolated in separated processes in Singularity. Tock, on the
other hand, utilizes the safety features of Rust to isolate device drivers but they run
in the same process due to a limited amount of memory. This means that Singu-
larity provides higher resource isolation than Tock and for example, device drivers
in Singularity can crash without crashing the entire kernel. Contrary, Tock can not
provide such guarantees because if a device driver crashes the entire kernel crashes.
Furthermore, another difference is that Tock relies on hardware protection of user-
space processes via an MPU whereas Singularity relies on software protection for
SIPs.

Communication between device drivers in Tock is mainly done via function calls
whereas Singularity utilizes its contract-based channels, i.e., IPC. Sing# provides
advanced features such as static verification of contract-based channels. This is a
direct result of the coevolution of Sing# and Singularity as the operating-system
developers have influenced the development of the language. These features enable
Singularity to provide more sophisticated dependability features than Tock. As Tock
only utilizes Rust, it can sometimes result in workarounds rather than customized
language features. A typical case where workarounds are necessary is when dealing
with affine types (ownership) in Rust. Whether the extra and in some cases, more
sophisticated features of Singularity and Sing# provide higher reliability and secu-
rity is hard to conclude without further and deeper analysis. The comparison is, as
stated earlier, in many cases unfair due to the different amount of resources that
the different platforms expect.

23



3. Related work

3.2 Contiki

Contiki is an embedded operating system developed by Dunkels et al. [24]. The
authors’ goals have been to implement a lightweight and flexible operating system
for IoT devices. It requires only tens of kilobytes of RAM and flash to run. Contiki
supports many different platforms as well as wired and wireless communication for
protocols such as IPv4, IPv6, 6LoWPAN, RPL and CoAP [25]. These are features
which have boosted the popularity of Contiki. The C programming language is the
primary language of Contiki.

Dynamic loading of applications is one of the key features of Contiki. Manually and
physically updating the software of IoT devices in remote areas quickly becomes
infeasible and extremely time-consuming. Loading and updating software dynami-
cally, especially over the air is hence of great importance. To enable this dynamic
loading at run time, Contiki separates applications from the kernel. Furthermore,
applications are, compared to the kernel, relatively small. Small applications speed
up the loading over the air which the authors argue is of great importance to save
energy, as IoT devices most often have limited energy resources, while downloading
new software. As the core should not change very often, it can be quite big and
completely isolated from the applications. The main motivation for these design
choices is that IoT devices should be easy to update after deployment.

The Contiki kernel is a hybrid model, i.e., it supports both event-based concurrency
and preemptive multithreading. Both models have their benefits and drawbacks.
Event-based concurrency simplifies synchronization as it is single threaded and thus
locking becomes easier and each event runs to completion. The model does not
work well for longer tasks which may block the kernel to react to other events. For
longer tasks, the preemptive multithreading is better suited where the tasks can
be preempted. Contiki implements event-based concurrency by default. However,
libraries provide preemptive multithreading to individual tasks.

3.2.1 Discussion
Contiki and Tock both target embedded systems with limited resources and are in
a sense, “competitors”. Both operating systems use event-based concurrency and
separate their kernels from the user applications. The separation of kernel and user
applications enable loading of applications without rebuilding the kernel. Currently,
though, Tock does not support any dynamic loading of applications over the air and
hence it still requires a connection to a programmer and or computer. As Dunkels
et al. [24] state, it is a big advantage of being able to send updated versions of the
software over the air. This is especially true if one targets wireless sensor nodes and
due to often a large number of devices in wireless sensor networks. However, based
on the design of Tock, a similar implementation should be possible to implement in
the future. The kernel architecture differs as Tock implements the micro-kernel ar-
chitecture whereas Contiki implements the layered architecture. Contiki emphasizes
to keep the kernel as big as possible to limit the network traffic upon loading user
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applications over the air. Contrary, Tock emphasizes to keep the trusted computing
based on the kernel as small as possible to decouple dependencies of other modules,
e.g., device drivers to enhance reliability and safety. Static verification of Tock en-
sures that it is less likely to crash due to memory corruption, such guarantees cannot
Contiki provide.
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Design

This chapter presents the design of the device drivers for Tock and consists of four
sections. First, in Section 4.1 we present and discuss different design choices for
the device drivers. Second, in Section 4.2 we present our device driver architecture
that matches the architecture of Tock, which favors reliability and safety. Third, in
Section 4.3 we present the hardware requirements. Finally, in Section 4.4 we present
the design of the device drivers.

4.1 General design of device drivers
In this section, we discuss alternative design decisions for device drivers. When
designing device drivers, Rubin et al. [26] argue that device drivers should provide
functionality rather than to dictate it. This means that a device driver should, for
example, provide functionality to turn a LED on or off, but not dictate the duration
of the different states. Such a design enables the application developers to build
software with a large amount of freedom without modifying the kernel. With the
previous LED example, it is quite straightforward when it comes to the granular-
ity of the driver whereas more complex device drivers require additional reasoning.
A device driver that manages, for example, a radio must provide more functional-
ity, e.g., turn on/off the radio, set transmission frequency, manage addresses, pro-
vide integrity and confidentiality. The design must consider which parameters that
should be available to the user or if basically everything should be encapsulated and
wrapped inside the kernel. We have come up with three different designs where one
follows Rubin et al. [26] and the other two ignore these recommendations in favor
for fine-grained control and low memory footprint.

4.1.1 Micro design
The micro design places all or most of the logic of the device drivers in different user
space libraries and the kernel mainly manipulates hardware without any further
checks. Figure 4.1 illustrates this design where the logic of the device drivers along
with the user space application are in the blue box and the kernel is in the red box.
Moreover, the user space libraries wrap system calls in an arbitrary way to provide
customized functionality to interact with the kernel. This means that system calls
expose methods which interact with the hardware without any additional checks by
the kernel, e.g., power off the radio while another application is utilizing the radio.
Thus, this design entails that the user space library considers such scenarios and
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Figure 4.1: Device driver design micro. Favor flexibility to the developer whereas
the majority of the complexity is maintained by the device driver library in user space, located in
the blue box to left. In order to interact with the hardware, a system call needs to be performed.
Thus, the kernel in the red box to the right does only manage basic hardware operations and
introduce a system calls for every specific task which the arrows indicate.

other state transitions. With this design, a developer can design and implement
customized functionality, e.g., communication protocols without any greater knowl-
edge about the kernel (only how to perform system calls).

In a way, this design moves responsibility from the kernel to the user space li-
braries and/or the user application. This design introduces more context switches
due to the large number of fine-grained system calls that the user space library
requires, e.g., turn on radio, set transmitting frequency and set addresses, which
otherwise could be handled by the kernel by, for example, one system call, which
the arrows indicate in Figure 4.1. Lastly, this design favors flexibility and freedom
for the developer.

4.1.2 Hybrid design
In contrast to the micro design, the hybrid design provides the opposite when it
comes to flexibility and freedom for the developer of a user application. Figure 4.2
illustrates this design where most of the complexity of the device driver is integrated
into the kernel, indicated by the red box. The blue box illustrates the user space
application that consist of fewer building blocks, i.e., only device drivers calls to
utilize the device drivers. Moreover, the logic of the device drivers, e.g., protocol
specific code, integrates into the kernel in this design. Rather than for example,
turning the radio on and setting transmitting frequency, the user application only
has to tell the kernel that it wants to transmit a packet at a certain frequency and
the rest is up to the kernel to handle. Since the kernel has more responsibilities, it
is easier to provide a robust and consistent design where kernel developers provide
application critical configurations. One such responsibility could be to keep track
of the current state of the device driver, e.g. reject system calls that do not comply
with the protocol specification. This design requires updates to the kernel to make
modifications of the device driver. While this design increases the difficulty to make
modifications to the implementation for a regular developer, one could argue that a
developer that desires to make such changes, can modify the kernel anyhow.

28



4. Design

Figure 4.2: Device driver design hybrid. All or most of the device driver complexity
is placed in the kernel, in the red box to the right. The user space application in the blue box to
the left only invokes a function and the kernel handles the rest. However, this might increase the
code size of the kernel but increase the performance. Further, the multiple arrows in the kernel
indicate that a system call can utilize multiple kernel resources.

4.1.3 Monolithic design
The most extreme design would be to put all the functionality in the kernel. Such a
design would cut off a dedicated area for the user application and require a custom
built kernel for each application including the user application. Figure 4.3 illustrates
this design where all functionality is integrated into the kernel which the red box
indicates. This implies that all functionality are executed in the same address space
and do not need to switch between user mode and kernel mode which decreases
the context switch overhead and can end up in better performance. However, it is
still possible to have some context switches i.e., if the kernel itself supports multi-
threading. A possible scenario for this design is when the device has very limited
amount of resources and one wants a very fast slimmed kernel for more efficient
context switching.

4.1.4 Discussion
The system architecture of Tock (a microkernel with device drivers integrated into
the kernel) favors reliability and security by relying on the memory safety of Rust.
The goals with our device drivers are to be more secure and more reliable than ex-
isting state-of-the-art device drivers and to also be compliant with the design goals
of Tock. In this subsection, we discuss the advantages and disadvantages of the
different designs from Sections 4.1.1 (micro), 4.1.2 (hybrid) and 4.1.3 (monolithic).

Tock focuses on reliability and security but device drivers cannot execute as sepa-
rated processes because embedded systems have limited resources. The monolithic
design primary achieves a fast memory-optimized kernel with no dedicated user
space area. A negative aspect of this design is that it does not provide sufficient
abstractions as everything execute in the same address space with direct access to
the hardware. Reliability and security are hence not favored and therefore, it is
not an option for our design. In contrast, the other two designs provide a dedi-
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Figure 4.3: Device driver design monolithic. All functionality is integrated into
a stripped variant of the kernel with the user space application as a part of the kernel. Unused
kernel modules can be removed to provide lower memory footprint.

cated user space area with separate address spaces. The micro design provides more
flexibility to the end-user with a relatively small kernel which can be slow since a
system call must be invoked to utilize each kernel resource. In many cases, it is not
desirable to give unnecessary control to user applications. Especially, since device
drivers are part of the same process as the user application. Consequently, a faulty
device driver can crash the user application but the kernel would handle it because
the user application runs as a separate process outside the kernel. Therefore, the
kernel itself would be very reliable and secure in the micro design due to low com-
plexity but user applications become less resilient as these may not be implemented
in memory safe languages. The micro design could work in Tock for simple device
drivers but it becomes hard to use for more complex device drivers. When it comes
to the hybrid design, the device drivers are controlled by the kernel and the user
space applications run outside the kernel. By leaving the critical features of the
device drivers in the kernel, one can provide simple but yet reliable device drivers
to the user application via a well defined interface. In addition to that, the device
drivers rely on type safety and are not allowed to use unsafe Rust. This keeps user
space applications as simple as possible since library calls can wrap many system
calls that the kernel later handles. As a result, it reduces the complexity of the user
application and also the likelihood of crashes.

We conclude that the hybrid design matches our requirements the best and all the
device drivers will be based on the hybrid design. A simple user space library for
each device driver will also be needed to wrap existing system calls. The intention
is that these should be as simple as possible but not limit the user. Furthermore, to
ensure the reliability and security of the device driver, the kernel is highly respon-
sible for the device driver. However, we argue that the micro design can be used in
cases of simple device drivers.
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Figure 4.4: Tock device driver architecture. The blue box to the left represents the
architecture for the user space application which contains two parts 1) the actual state machine
2) the libraries that provide a uniform usage of the device drivers and standard C functions. Fur-
thermore, the red box to the right is the kernel architecture of the device drivers whereas capsules
and hardware modules interact via a dedicated interface, HIL, to utilize hardware resources.

4.2 Device driver architecture

In the following section, we present the building blocks of device drivers in Tock.
Each device driver consists of the following components: user space library, capsule,
hardware interface layer (HIL) and hardware module.

4.2.1 User space library

The user space library provides specific libraries for each device driver to facilitate
the use of the device driver. The general use case of the library is to wrap and
provide functionality around the native system calls in Tock. In turn, that provides
a uniform way to utilize the device drivers instead of each user space process having
to provide its own functionality around the native system calls.

4.2.2 Capsule

Capsule is a module that controls each device driver. It is a module which sits
between the user space and the hardware module, further described in Section 4.2.4.
System calls ultimately end up in a capsule and it handles the request from user
space. A capsule is, in other words, the interface for user space processes to interact
with the kernel. As an example, to achieve the blinking effect of a LED, the capsule
wraps calls to hardware that turns the LED on and off. Moreover, the capsule is also
responsible for managing the hardware resources to prevent multiple interactions
with the hardware as it is busy. The capsules are classed as untrusted and are
therefore not allowed to contain unsafe Rust. This means that they are very unlikely
to crash since they enhance the safety guarantees provided by Rust.
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4.2.3 Hardware interface layer (HIL)
The HIL specifies the interface between hardware modules and capsules. Ideally,
this should be the only way to access hardware modules and all other functionality
should be hidden inside each hardware module. The functions in the interface should
be independent of the hardware, i.e., the same functionality should be available for
all platforms. As an example, most developers should not be aware of how a LED
is turned on in the hardware, hence, the HIL defines a function turn_on_led() for
this. HIL typically defines a lot of similar functions, such as to turn a LED on and
off.

4.2.4 Hardware module
The hardware module enables interactions with the hardware. These modules should
implement the methods specified in the HIL for capsules to utilize a specific hardware
dependent features. As opposed to the other modules, the code in hardware module
is hardware dependent. Each specific platform may have its own implementation of
the HIL since there is no uniform way to interact with hardware dependent details.
These modules are unique to each platform and they should contain as little logic
as possible, i.e., only code that is unique to the hardware. If this module would
contain code that is not dependent on the hardware, several modules would require
unnecessary reimplementation when porting the code to new hardware. This is
prone to produce errors since changes for one hardware require updates for all other
hardware as well, i.e., more code to review. An example of hardware dependent
code is how to turn on the power to the radio module and manage interrupts.

4.3 Choice of hardware
Some of the drivers are dependent on the hardware, e.g., radio and temperature
sensor. To test and verify those device drivers, we need an actual chip, rather than
an emulator. This is especially true for the radio since the protocol must be verified.
The specifications of the hardware should meet the requirements of Tock in terms of
resources and architecture. Tock only requires 16 kB of RAM and 512 kB of flash,
so a lot of chips satisfy these requirements. However, as we evaluate the suitability
of Tock and Rust as building blocks of IoT devices, the performance of the hardware
should not exceed the performance of common IoT devices. A tighter requirement
is the architecture of the processor. Currently, Tock only supports ARM Cortex-M
processors. Furthermore, a set of peripherals should be available to utilize drivers
and enable wireless connectivity for the device.

4.4 Design of device drivers
In this section, we present the designs of the device drivers in Tock where all the
designs are based on the hybrid design, described in Section 4.1.2. The section is
divided into four parts where we in the first part presents the design for the BLE
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device driver. In part two, we present the design for the AES device driver. In part
three, we present the design for the TRNG device driver. Finally, we present the
design for the temperature sensor device driver.

4.4.1 BLE device driver design
The goal of BLE driver is to enable transmissions in terms of BLE advertisements.
Figure 4.5 illustrates the design. The user application should be able to start and
stop BLE advertisement by sending requests to the kernel. Two different requests
should be available to the user application, one to start and one to stop the trans-
mission of advertisement, respectively. The start advertising request should contain
the advertisement data. Two data fields should compose the advertisement data,
one containing the local name and the other the actual data to send, such as sensor
measurement. The local name is the name that shows up when most commercial
products, e.g., smart phones, scan for Bluetooth devices. Once, the user application
sends the request, a capsule should proceed with the request. The capsule should
also ensure compliance with the protocol specific requirements for BLE, e.g., trans-
mitting on the right channel and with the right address. Another responsibility is
to ensure mutual exclusion of the hardware, i.e., that no more than one user space
process can utilize the radio at the same time. The major settings that the capsule
is responsible for are:

• Transmission address
• Transmission frequencies
• Timing requirements

The device driver should advertise on address 8e89bed (hexadecimal format) and on
three different frequencies. As described in Section 2.5 the use of different channels
is to prevent interference with other devices and these channels are 37, 38 and 39. In
other words, an advertisement comprises radio transmission on the channels 37, 38
and 39 with no or a very short delay between them. Lastly, the capsule is responsible
to continuously send advertisements. Between each advertisement, there should be
a delay in the range from 10 milliseconds to 10 seconds. Once the capsule has
configured the radio per the requirements, a transmission can start. The capsule
should start the transmission by sending a request to the hardware module. After
the request is finished, the capsule should notify the user application indicating
whether the request was successful or not. The stopping of advertisement relies on
the same design as starting but omitting the data.

4.4.2 AES device driver design
The goal of the AES device driver is to provide both encryption and decryption of
data in Tock. AES is a state-of-the-art encryption standard for symmetric block ci-
phers which provides confidentiality but lacks integrity [27]. Implementations of AES
are possible both in hardware and software. This device driver relies on hardware
support for AES. By utilizing the hardware for encryption, the focus of the device
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Figure 4.5: Tock BLE device driver design. The figure illustrates the design of
the device driver for the BLE device driver. Green indicates that the module is safe, i.e., will not
crash, whereas red contains unsafe code. Red modules rely on the fact that the programmers know
what they are doing i.e., some of Rust safety features are disabled.

driver itself is prioritized over the implementation of the algorithm. The National
Institute of Standards1 (NIST) recommends five different block cipher modes to pro-
vide confidentiality: Electronic Codebook (ECB), Cipher Block Chaining (CBC),
Cipher Feedback (CFB), Output Feedback (OFB), and Counter (CTR) [28]. ECB
is not secure for encrypting more than one block with the same key, i.e., it reveals
information about the plaintext [29]. Thus, it is not an alternative as block cipher
mode for this driver. CBC, CFB, OFB, and CTR are on the other hand proven to
be chosen plaintext attack secure [29] under some restrictions. An example of such
a restriction is that nonce-based encryption must only use each counter value once.
Rogaway [29] has performed an evaluation of the different modes of operation for
block ciphers. He concludes that CTR is the best choice due to its simplicity, small
memory footprint, high speed, and good security. The small memory footprint that
CTR allocates is important and favorable since the design targets embedded sys-
tems with limited resources. The simplicity of CTR entails that only the encryption
function of AES along with a nonce is used for converting plaintext and ciphertext
respectively. In other words, it mimics or acts as a stream cipher. Moreover, each
character of ciphertext is independent of each other and does not rely on padding,
which means that it can run in parallel. These properties are especially attractive
for embedded systems that implement AES in software. CBC, on the other hand,
uses both the encryption and decryption functions and are using padding. Thus,
each message must be a multiple of the block even if the message is shorter than the
given block length. CFB and OFB are hybrids of CTR and CBC and not further
described. We conclude that CTR is the most suitable block cipher mode for IoT
devices.

1https://www.nist.gov
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Figure 4.6: Tock AES device driver design. The figure illustrates the design of
the device driver for the AES128 counter mode device driver. Green indicates that the module is
safe, i.e., will not crash, whereas red contains unsafe code. Red modules rely on the fact that the
programmers know what they are doing i.e., some of Rust safety features are disabled.

A user application should be able to initiate the decryption and or encryption op-
eration via a system call. Together with the call to the kernel, the call requires
a buffer with the ciphertext or plaintext. Once the call reaches the kernel, a cap-
sule should proceed with the request. The capsule should contain the logic which
makes the encryption and decryption comply with the AES standard. Such logic
includes checks for key length. Insurance of mutual exclusion is also a responsibility
of the capsule. If the capsule does not detect any errors, it should continue with the
process by providing the hardware module with the buffer with data from the user
application. In the case of errors, the capsule should notify the user application.
The AES hardware module should encrypt or decrypt the entire buffer. Once the
operation has finished, it should return the result in a buffer to the AES capsule.
Finally, the capsule sends the buffer back to the user application.

4.4.3 TRNG device driver design
Currently, Tock supports a couple of different TRNGs but not the one on nRF51.
Thus, the goal of this device driver design is to utilize the TRNG on nRF51. The
major parts of the device driver already exist in Tock, including the user application,
the user space libraries, and the capsule. Therefore, our design of the device driver
only includes the hardware module which must comply with the existing design.
Figure 4.7 illustrates existing components in yellow and new components in red.
The existing design relies on that the user application requests the number of ran-
dom bytes to generate and passes it to the capsule. After that, the capsule handles
the request and in turn requests the hardware module to generate the number of re-
quested random bytes. Once the request is invoked, the hardware module on nRF51
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Figure 4.7: Tock TRNG device driver design. The figure illustrates the design of
the device driver for the TRNG device driver. Green indicates that the module is safe, i.e., will
not crash, whereas red contains unsafe code. Red modules rely on the fact that the programmers
know what they are doing, i.e., some of Rust safety features are disabled.

will generate the requested number of random bytes and the capsule continuously
keeps track of the number of random bytes generated. When the requested num-
ber of bytes has been generated by the hardware module, the capsule notifies the
user application and the capsule finishes the invocation to the hardware modules.
Figure 4.7 illustrates this sequence.

4.4.4 Temperature sensor device driver design
The goal of this device driver is to utilize the hardware based temperature sensor
on nRF51. Currently, in Tock, device drivers for other temperature sensors exist
but no general capsule is available. The biggest design decision of the device driver
is whether the device driver shall or shall not provide functionality for sampling of
temperature data. This design does not consider sampling in the device driver. It
just reads a temperature value and sends it back to the user process. Therefore, it is
up to the user application how to sample the temperature sensor data. We believe
this design decision will provide the basic functionality rather than dictate it.
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Figure 4.8: Tock temperature sensor device driver design. The figure illustrates
the design of the device driver for the temperature sensor device driver. Green indicates that the
module is safe, i.e., will not crash, whereas red contains unsafe code. Red modules rely on the fact
that the programmers know what they are doing i.e., some of Rust safety features are disabled.

A user application should start the operation with a request to the kernel to retrieve
temperature data. The temperature capsule should forward the request to the kernel
and provide mutual exclusion for the user application. Both upon successful and
non successful attempts, the capsule should notify the user application. Once the
hardware module has measured the temperature, it will return the temperature data
to the capsule. Finally, the capsule should send the temperature data back to the
user application. Figure 4.8 illustrates the design of the device driver.
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5
Implementation

This chapter presents the implementation of the device drivers for BLE, AES counter
mode, TRNG and temperature sensor for nRF51 in Tock. Along with the device
drivers, it also presents user applications that utilize and test the device drivers.
The rest of the chapter is structured as follows: First, Section 5.1 presents the
implementation details that all device drivers have in common. Second, Section 5.2
presents the implementation of the BLE device driver. Third, Section 5.3 presents
the implementation of the AES counter mode device driver. Fourth, Section 5.4
presents the implementation of the true random generator. Finally, Section 5.5
presents the implementation of the temperature sensor device driver.

5.1 Common implementation
This section presents a template device driver implementation in Tock that all other
device drivers build on. The reason why is to avoid repeating implementation details
such as how to implement different system calls and interchange data with the kernel.
Furthermore, we go through the implementation of main components of the device
driver architecture in Tock, as described in Section 4.2.

5.1.1 Capsule implementation
The capsule is the main component of the device driver; it manages the system calls
from user applications and communicates with the hardware modules. In a sense,
the capsule can be regarded as the brain of each device driver. An example of a use
case of a capsule is that, upon request from user space, it checks whether the system
call is valid or not, i.e., if the kernel supports the requested operation, and it also
ensures that the driver is not occupied by another entity. If the checks are positive,
the capsule will request the hardware modules to perform the specified operation
while providing mutual exclusion. Another common task for the capsule is to follow
protocol standards. For example, for BLE, it should build upon the BLE proto-
col standard to provide communication according to the protocol. Protocol specific
logic can include transmitting frequency, channel hopping and packet structure.

Two separate features enable the communication from user applications to the hard-
ware modules in the kernel. First, the capsule must implement the system call in-
terface. This makes the capsule assignable from the scheduler, i.e., the scheduler is
able to point a system call to the capsule. Only through system calls is the user
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application able to communicate with the kernel. Second, the capsules rely on the
different HILs that describe accessible functions in the hardware modules.

A capsule in Tock is a struct with associated data and member functions. The
system call interface, that most capsules implement, is a trait in Rust. A trait con-
tains one or more function definitions that are optional to implement. The system
call trait defines three functions; command, allow and subscribe. Capsules must
implement at least one of these functions to enable the system call interface, but it
does not have to implement all of them.

As already mentioned, capsules use the HIL to communicate with hardware modules.
However, a capsule can also implement HIL functions. This enables communications
in the other direction, i.e., from the hardware module to the capsule. On a high
level, this works like a callback since the capsule instructs the hardware module to
execute some task, to avoid busy-waiting for the task to finish, the hardware mod-
ule can call the capsule via the HIL interface once the task completes. These traits
are most often called Client traits since the capsule becomes the client which the
hardware module calls.

Listing 5.1 shows an example of a theoretical capsule named Capsule, lines 26
to 28 show the data of the struct. Furthermore, the Capsule implements two traits:
Driver, for the system calls on lines 31-41, and Client, for the “callbacks” on lines
44-50. All our device driver implementations build on top of this example capsule.

Listing 5.1: Example Capsule
1 pub struct Capsule<’a, D: DeviceDriver + ’a> {
2 driver: &’a D,
3 // add data to struct here
4 data: Cell<usize>,
5 }
6 // system call interface implementation
7 impl<’a, D: DeviceDriver> Driver for Capsule<’a, D> {
8 fn allow(&self, appid: AppId, allow_num: usize, slice:

AppSlice<Shared, u8>) -> ReturnCode {
9 // implementation of the allow system call

10 }
11 fn subscribe(&self, subscribe_num: usize, callback: Callback) ->

ReturnCode {
12 // implementation of the subscribe system call
13 }
14

15 fn command(&self, command_num: usize, data: usize, appid: AppId) ->
ReturnCode {

16 // implementation of the command syscall
17 }
18 }
19 // Client HIL implementation
20 impl<’a, D: DeviceDriver> Client for Capsule<’a, C> {

40



5. Implementation

21 fn call_from_chips() -> ReturnCode {
22 // implementation of call from chips
23 }
24 }

5.1.2 Hardware module implementation
The hardware modules introduce the lowest layer of abstraction, i.e., they interact
directly with the hardware by reading and writing to the registers in the processor.
Much like the capsules, a hardware module consists of a struct with associated data
and methods. These methods are private by default, i.e., not publicly accessible.
Initialization and interrupt handlers are, however, publicly available because they
are needed outside the hardware module itself for general initialization and inter-
rupt handling. The hardware module implements the predefined methods in the
HIL. These methods should be available to the capsules and are therefore also pub-
licly available.

As Tock is single-threaded and relies on event-based concurrency in order to pre-
vent a lengthy process from suspending the kernel, most hardware modules rely on
interrupts. The hardware module initiates an operation and enables an interrupt
to indicate when an operation is finished. This enables other tasks to execute con-
currently which busy-waiting does not. Upon completion, the hardware triggers
an interrupt and the kernel eventually handles the associated interrupt. When the
hardware module completes a request, it signals the capsule via the client trait by
invoking the callback function.

In Rust, manipulation of processor registers is not safe, i.e., reading and writing
to raw addresses by dereferencing raw pointers. Thus, hardware modules must be
able to circumvent the type system in Rust. No other module than the hardware
modules should contain the unsafe keyword in the device drivers. To show what
this looks in Rust, we show a common use case of a simplified hardware module
in Listing 5.2 that writes directly to memory register which circumvents the type
system. First, line 3 shows a declaration variable of regs, a constant raw pointer to
address 0x4000D000. The address is just for illustration and not the real address.
Second, lines 6-10 show a declaration of a struct in a memory map which starts at
address 0x4000D000 and ends at 0x4000D008 since the u32 data type size is 4 bytes.
Third, on line 15 the pointer regs is dereferenced. Note that assigning a raw pointer
is safe in Rust but dereferencing a pointer is not. Finally, on line 17 the value 1 is
written into address 0x4000D000.
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Listing 5.2: Hardware module
1 pub struct HardwareModule<’a> {
2 // raw pointer
3 regs: *const REGISTER,
4 }
5

6 const REGISTER_BASE: usize = 0x4000D000;
7 pub struct REGISTER {
8 pub START: VolatileCell<u32>,
9 pub STOP: VolatileCell<u32>,

10 }
11

12 impl HardwareModule {
13 fn start(&self) {
14 // dereference pointer regs
15 let regs = unsafe { &*self.regs };
16 // write 1 to address 0x4000D000
17 regs.START.set(1);
18 }
19 }

5.1.3 Sharing data between userland and the kernel
Sharing data between user space and the kernel space is important to enable user
applications to process data both to and from sensors or other inputs. In Tock, one
must follow two steps to share data from the user application to the kernel. Firstly,
the user application shares a reference to a, by the user application, allocated buffer
with the kernel via the allow system call. We show this in Listing 5.3.

Listing 5.3: Pass buffer by reference from userland
1 unsigned char data[40] = {0};
2 allow(DRIVER_NUM, COMMAND_NUM, (void*)data, sizeof(data));

Secondly, the kernel wraps the buffer in an AppSlice data structure, which is unique
to Tock. An AppSlice contains the starting address of the buffer and its size. As
the capsule handles the allow request, it receives the AppSlice object. The kernel
encapsulates this object in two nested data types, first a Container and then an
Option data type. Rust requires nested data types to cope with the type safety.
Capsules (structs) are immutable and this prevents changes of the internal data,
which is troublesome when we want to write to the buffer. The Container data
type, which is unique to Tock, solves this by providing interior mutability1. In the
standard library in Rust, the containers Cell and RefCell provides interior mutability
but is not suitable for complex data structures such as an AppSlice. The Option2

data type is common in functional languages. It encapsulates values of any given
1https://doc.rust-lang.org/book/mutability.html
2https://doc.rust-lang.org/std/option/
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type such as integers and floats but can also be empty. An option data type either
contains data or it does not. Variables inside an Option data type can be taken,
i.e., moved. Thus, replacement of the option data type, i.e., the buffer, is possible
and required when writing to the buffer.

To illustrate how this is done in Rust, Listing 5.4 presents a simplified version of a
capsule that receives a shared buffer, transforms the buffer and passes it along to
hardware modules. We break down the task into four parts and explain it step-by-
step. First, lines 15-19 show the struct itself that contains a reference to the hard-
ware module in driver, a container that encapsulates the AppSlice and a TakeCell (a
container of static mutable data). The variable driver enables the communication to
the hardware module via the HIL, the Container contains the AppSlice and we use
the TakeCell to convert the AppSlice into a mutable static array. Second, on lines
24-25, a closure accesses to the container object within the Capsule struct. Third,
line 26 replaces the existing Option object with a new Option object containing an
AppSlice with the buffer passed by the user application. Fourth and finally, lines
31-42 show how to read already stored data in a capsule and pass it along to the
hardware modules. To be more specific, line 31 shows how to get access to the
Option within the struct by using an iterator. Then to access the content of the
Option in the Container requires a closure, line 32 shows this. Moreover, to get
access inside the Container, the AppSlice which holds the buffer and the length of
the buffer, another closure is needed which line 33 shows. However, because the
AppSlice holds a reference to a shared buffer it must be converted into a type that
the HIL supports which is a mut [u8] array with static lifetime. Due to that, the
capsules are not allowed to contain unsafe code the TakeCell is used to transform
the shared buffer into a mut [u8] array with static lifetime. Inside the third closure,
the zip function traverses the shared buffer and the TakeCell simultaneously on line
36 and lastly copies the contents of the shared buffer to the TakeCell. The length of
the AppSlice buffer determines how many bytes to copy. To conclude, line 39 passes
the TakeCell with contents of the AppSlice to the hardware module. Note that, the
take function of the TakeCell moves the underlying object and it must be replaced
with some other static mut [u8] data to be used further since the object becomes
None.

Listing 5.4: Buffer within the Tock kernel
1

2 // container of AppSlice
3 pub struct App {
4 buffer: Option<AppSlice<Shared, u8>>,
5 }
6

7 impl Default for App {
8 fn default() -> App {
9 App {

10 buffer: None,
11 }
12 }
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13 }
14

15 pub struct Capsule<’a, D: DeviceDriver + ’a> {
16 driver: &’a D,
17 apps: Container<App>,
18 kernel_tx: TakeCell<’static, [u8]>,
19 }
20

21 impl<’a, D: DeviceDriver> Driver for Capsule<’a, D> {
22 fn allow(&self, appid: AppId, allow_num: usize, slice:

AppSlice<Shared, u8>) -> ReturnCode {
23 // replace AppSlice
24 self.apps
25 .enter(appid, |app, _| {
26 app.buffer = Some(slice);
27 ReturnCode::SUCCESS
28 })
29 }
30 // collect data in AppSlice and send to chips
31 for cntr in self.apps.iter() {
32 cntr.enter(|app,_| {
33 app.buffer.as_ref().map(|slice| {
34 let len = slice.len();
35 self.kernel_tx.take().map(|buf| {
36 for (out, inp) in

buf.iter_mut().zip(slice.as_ref()[0..len].iter())
{

37 *out = *inp;
38 }
39 self.driver.hardware_module(buf, len);
40 });
41 });
42 });
43 });
44 }
45 }
46 }
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5.2 BLE
This section presents the implementation of the BLE device driver that builds on the
design presented in Section 4.4.1. The device driver consists mainly of three different
modules within: BLE user library, BLE capsule, and BLE hardware module.

5.2.1 User space library
The BLE user space library is built on top of the existing system calls available in
Tock. It provides two functions available to the user applications:

• start_ble_advertisement(name, name_len, data, data_len) wraps three sys-
tem calls that starts the BLE advertisement. First, two allow calls share the
local name and data with the kernel respectively. Second, the wrapper tells
the kernel to start advertising by sending a command.

• stop_ble_advertisement() wraps a command system call to tell the kernel to
stop sending advertisements

5.2.2 User application
The purpose of the user application is to demonstrate and evaluate the device driver.
To utilize the driver, the user application uses the BLE library which provides two
functions, one to start sending BLE advertisement and one to stop the transmission.
The user application allocates two buffers to advertise, one with the device name
and the other one with the data. The device will continue to send advertisements
until the user application explicitly calls the stop function.

5.2.3 Capsule
The capsule is the core of the device driver. It enables communication between the
user application and makes sure that the device driver follows the BLE standard.
To communicate and interact with the user application, the capsule manages system
calls. The capsule accepts two allow calls to read the data from the user applica-
tion, one for the device name and one for the data. Together, the device name
and data constitutes the payload of a BLE packet. Due to the limitations of BLE
advertisement packets, i.e., the size of the packets, the capsule must ensure that the
size of the device name and the data does not exceed a predefined threshold, in this
case 31 bytes including the headers. If the combined size is too big the capsule will
deny the user application to start sending advertisements. Two commands manage
the starting and stopping of the advertisements respectively. Upon a start com-
mand, the capsule starts sending advertisements, with the data received from the
user application, by invoking the hardware module. Before the hardware module
can send the advertisement, the capsule has to configure it. Configuration of the
hardware module is more or less just to follow the BLE standard. It is however
highly important to enable communication with commercial devices. The standard
specifies the settings, e.g., transmitting frequency and address, and the hardware
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module exposes functions to configure these parameters to the capsule. The adver-
tisements are periodic and the timing of the advertisements is important. With a
larger interval between advertisements the device consumes less energy, but with a
too large interval, the advertisements might not reach other devices due to packet
collisions or simply bad timing. It is up to the designers to define a good interval
since it is not specified in the BLE standard.

The capsule relies on timers to achieve periodicity. As the start command reaches
the capsule, it sends the first of three advertisements (see Section 2.5 about BLE).
Upon completion of one send request, the capsule starts a timer. The timer capsule
manages the timer and hence the BLE capsule can stop its execution. Once the
timer fires, the timer calls callback function in the BLE capsule. This callback func-
tion starts the transmission of the next advertisement. For the last advertisement,
the capsule increases the time of the timer until it all starts over. This process
provides bursts of advertisements in a periodic fashion.

5.2.4 Hardware module
The hardware module manages all communication with the hardware, i.e., the radio
chip. It is responsible for configuring and handling the radio chip and for setting up
the BLE packet. To configure the radio, the hardware module modifies registers that
are defined in the data sheet. The packet configuration is slightly more complicated.
It requires a mapping between the radio packet and the BLE packet. Three registers
in the radio chip constitute the header of a BLE packet: S0, LENGTH, and S1.
Figure 2.5.1 shows the structure of a BLE packet, by setting S0 to 2 bytes, LENGTH
to 6 bits and S1 to 2 bits, these registers maps to the BLE header. Furthermore, a
state machine describes the radio chip where a state register holds the current state.
For each state change, the chip generates an interrupt and the state register tells
which state the radio is in. This enables an interrupt based design, rather than a
busy wait design where the driver occupies all the resources.

5.2.5 Discussion
This device driver requires further work to comply with more of the BLE standard.
In the current state, only simple advertisements are available. We motivate this
by arguing that our contributions are device drivers rather than a full BLE stack.
However, the community of Tock shows a big interest in the driver for their projects.
Some other projects rely entirely on an infrastructure around BLE advertisements.

The user application allocates two buffers, one for the device name and one for
the data. With this implementation, the capsule has to perform less parsing com-
pared to if one buffer contained all information. When constructing the BLE packet,
an array contains all the bytes without any formatting or helper functions.
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Figure 5.1: Tock BLE device driver implementation. The figure shows the entire
BLE device driver. To the left, blue boxes illustrate the user space application with the primary
purpose to interact with the Tock kernel via two system calls to the device driver to start and
stop periodic advertisements. The middle green boxes are untrusted Tock modules which manage
the BLE state machine and virtual timers to send periodic advertisements without suspending the
entire kernel. To the right, red boxes illustrate trusted modules which directly manages the radio.

Updating or modifying the packet, other than device name and data, is a trouble-
some task. Further work should introduce predefined data structures for different
types of advertisements with helper functions that easily constructs and modifies
the packet. As a summary, we provide a framework for a BLE driver. The driver
is functional and can perform simple tasks. Further work includes extending and
improving the driver.

5.3 AES-128-CTR
This section presents the implementation of AES-128-CTR device driver in Tock
for nRF51 that builds on the design presented in Section 4.4.2. The device driver
consists mainly of four different modules within Tock namely AES-128 library, Sym-
metricEncryption capsule, SymmetricEncryption HIL and AES hardware module for
nRF51.

5.3.1 Library
The library supports AES-128-CTR in both software and in hardware. It is assumed
that the user application provides a key, initial counter, and plain/ciphertext to the
library. The key is the secret key, required for encryption and decryption. The
initial counter enables a random start of the encryption.
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Figure 5.2: Tock AES device driver implementation. The figure shows the
entire AES-128 counter mode device driver. To the left, blue boxes are different parts of the user
space application which are device driver calls that are asynchronous i.e., return once the Tock
kernel has handled the call. In the middle, green boxes are untrusted kernel modules i.e., the
capsule and the HIL. For simplicity reasons, all system call implementations are referred to as
“System Calls” which enables configuring of a key and to encrypt or decrypt a payload. Note, that
the modules in the HIL only defines the interface and actual implementation elsewhere. To the
right, red boxes are trusted kernel modules that configure the AES chip.

The library provides three functions which wrap the system calls command, allow
and subscribe:

• aes128_init(callback) wraps a subscribe call which configures the callback
function to be used by kernel once a task has finished, e.g., an encryption
operation has finished.

• aes128_configure_key(key) wraps two calls: allow and command. The allow
call shares the key between the kernel and the user application. To config-
ure the key, in this case, to set it in the hardware, the function invokes the
command call.

• aes128_{encrypt,decrypt}_ctr(plaintext, initial counter) wraps three system
calls, one allow to share the plain/ciphertext, another allow to share the initial
counter and lastly a command call to start the encryption or decryption.

Even though the library provides functions for both encryption and decryption, they
are equivalent, i.e., there is no difference between them. Encrypting a text twice
with the same initial counter value yields the plaintext with AES-CTR. However,
the code is easier to read if the function name signales the intended purpose.
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5.3.2 User application
The user application is relatively simple and its purpose is to demonstrate the device
driver and to verify that the counter mode implementation is correct. It utilizes the
AES-128 library, further described in Section 5.3.1, to initialize AES, configure a
key, encrypt some data and decrypt the encrypted data. The blue marked parts of
Figure 5.2 illustrate the implementation of the user application. As encryption and
decryption can sometimes be lengthy processes, the user application is event driven.
Once an event occurs, which in this case is the completion of a task (the blue box
illustrates the tasks), the kernel calls the assigned callback function. Dependent on
the data in the callback, the application will either continue or upon completion,
exit. For example, after the user application invokes aes_128_ctr_set_key it goes to
sleep and cannot continue with aes128_ctr_encrypt until it receives a callback. This
implementation enables other tasks to execute while encrypting or decrypting or even
put the processor to sleep which can save power. A test, specified by NIST [28],
verifies that the driver is correct. It encrypts and decrypts 64 bytes, where given
the key, initial counter and a plaintext should produce a known ciphertext to pass
the test.

5.3.3 Capsule
The SymmetricEncryption capsule builds on the example capsule and handles con-
figuration of the driver, encryption and resource allocation. It handles two system
calls to configure the driver. One subscribe call for setting the callback function that
the driver calls upon task completion. The other sets the encryption and decryption
key via the allow call. For each encryption, two allow calls share the initial counter
and the plain/ciphertext with the capsule respectively. The capsule keeps track of
the current state of the driver with four states: not configured, encrypting, decrypt-
ing and idle. With these states, the capsule can manage resources and verify the
status of the driver. Both the hardware module and the capsule utilizes the state
but only the capsule updates it.

5.3.4 Hardware module
This module manages the interactions with the encryption hardware. In Figure 5.2,
the red parts illustrate the overall functionality of the AES hardware module. The
module exposes two functions via the HIL to the capsules, one to set the key and
one to invoke the encryption/decryption. To set the key is quite simple, just write it
to the register. The second function is a wrapper for all the other configurations and
invocations of encryption and decryption. In terms of configuration, it initializes all
associated data, keeps track of the state of the hardware module and configures the
initial counter. The function also generates the keystream and XORs the keystream
with the input data. In order to encrypt or decrypt data on the nRF51, the hard-
ware module must configure the AES-ECB registers to point to the beginning of 48
continues bytes in RAM. The first 16 bytes correspond the key, the second 16 bytes
correspond to the plaintext and the last 16 bytes corresponds the ciphertext. The
AES-ECB module supports direct memory access (DMA) to read and write into
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RAM without an involvement of the CPU once it is enabled. The DMA together
with an interrupt based implementation makes the module nonblocking, i.e., the
kernel can perform other tasks while the module is encrypting or decrypting.

We present the sequence of the high level aspects during an encryption operation.
First, all data needed for the AES hardware module is initialized. This is required
for every new encryption/decryption operation. The struct in the hardware module
encapsulates all this data. Two types of containers, Cell or TakeCell, store the data
in the struct and provide interior mutability. Listing 5.5 shows all this data stored
in the struct. The data objects in the struct have the following responsibilities:

• regs - pointer to AES module in RAM
• client - object to call SymmetricEncryption capsules
• ctr - 16 bytes containing the counter value
• input - data to be encrypted or decrypted
• keystream - data containing the keystream
• remaining - value indicating how many more bytes of keystream to generate
• len - value indicating the length of input data to be encrypted or decrypted
• offset - cursor to access in correct place in the arrays.

Listing 5.5: AES Hardware Module Struct
1 pub struct AesECB {
2 regs: *mut AESECB_REGS,
3 client: Cell<Option<&’static Client>>,
4 ctr: Cell<[u8; 16]>,
5 // input either plaintext or ciphertext to be encrypted or decrypted
6 input: TakeCell<’static, [u8]>,
7 // keystream to be XOR:ed with the input
8 keystream: Cell<[u8; 128]>,
9 remaining: Cell<usize>,

10 len: Cell<usize>,
11 offset: Cell<usize>,
12 }

Second, the function enables the AES module and starts the generation of the
keystream. After each generation of the keystream, the module updates the state
and increments the counter. In the case where the module did not generate all bytes
for the keystream, i.e., the keystream is smaller than the input, the process continues
until the generated keystream is as big as the input data. Since the keystream must
be XOR:ed with the input data (byte by byte), it must be as long as the input data.
For instance, if the input data is longer than 16 bytes more than one AES operation
has to be performed to generate the entire keystream. Once the keystream contains
as many bytes as the input data it is finished. Finally, we XOR the input data and
the keystream with each other and send it back to the capsule.
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5.3.5 Discussion
The implementation of this device driver differs from the original design principle
where the hardware module should contain as little logic as possible. The biggest
reason for this is that the SymmetricEncryption capsule should support both soft-
ware and hardware encryption. Rather than creating a helper capsule, containing
logic specific to the hardware module, some of the logic is therefore put in the hard-
ware module.

There are two types of hardware AES-128 modes available on the nrf51, AES128-
ECB, and AES128-CCM. The AES128-CCM manages the encryption/decryption of
BLE packets and this task has the highest priority, i.e., a task not connected to the
radio module might be aborted while encrypting/decrypting with the AES128-CCM
module. Technically, “regular” encryption/decryption can use the AES-128-CCM,
but with the risk of the radio aborting the process and/or creating race conditions.
To reduce those risks, our encryption AES128-CTR builds on top of the AES128-
ECB in software. However, both AES128-CCM and AES-ECB use the same under-
lying AES hardware module but the chip ensures mutual exclusion.

In the current implementation, we generate the entire keystream at once and then
XOR the input with the keystream byte by byte. As the hardware generates 16
bytes at a time and the input might not be a multiple of 16, the keystream can be
longer than the input. In those cases, we only XOR the keystream corresponding to
the input, i.e., we ignore some bytes. A more intuitive solution might be to allocate
a buffer with the total length of the input data. Then, for each 16 bytes of generated
keystream, we XOR:ed it with the corresponding part of the input data and the re-
sult of the XOR operation is added/appended to the buffer. This process repeats
until all the keystreams are generated and XOR:ed. The problem with this solution
is that the capsule requires a static mutable array for the final output. All operations
on static mutable arrays are unsafe in Rust. Our solution relies on the TakeCell data
type. Operations on the TakeCell are safe but it only enables a one-time operation,
i.e., each read or write operation consumes the TakeCell. Since only one operation
is possible, we generate and XOR everything at once. This implementation reduces
the number of unsafe blocks.

5.4 TRNG
This section presents the implementation of the TRNG device driver in Tock for
nRF51 that builds on top of the design presented in Section 4.4.3. The device driver
consists of three components: user application, user library, capsule, and hardware
module. However, this device driver already exists for other platforms, i.e., the user
library, and capsule are available, but the hardware module is missing for nRF51. As
a result, this section only covers the implementation of the hardware module, which
maps directly to the already available capsule. Figure 5.3 illustrates the complete
device driver. The yellow parts are the already existing parts of the device driver,
while the red ones illustrate our contribution to the nRF51 platform.
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Figure 5.3: Tock TRNG device driver implementation. The figure shows the entire
TRNG device driver. To the left and in the middle, yellow boxes are existing parts of Tock i.e.,
not implemented by us. To the right, red boxes are modules that directly configures the TRNG
chip for nRF51 which have been implemented a part of this thesis.

5.4.1 Hardware module
This module interacts with the hardware to generate random numbers. Figure 5.3
presents the design of the driver and the red section visualizes the hardware module.
The hardware module exposes one function to the HIL/capsule named get. This
function starts the generation of random numbers. For each 4 bytes of random
numbers, the hardware module notifies the capsule via a callback function. In the
case where the user application requests more than 4 bytes of random numbers from
the capsule, the capsule will instruct the hardware module to provide 4 more bytes,
until the hardware module has generated all the requested bytes.

5.4.2 Discussion
As this device driver already exists, we have follow the “requirements” of the design.
What is troublesome is that the design has a constraint to the hardware. For
each generation of bytes, it requires 4 bytes to be generated from the hardware
module. However, nRF51 can only generate 1 byte at a time and this forces us to put
unnecessary logic in the hardware module. To continue the generation of additional
bytes, we invoke a new call to generate additional bytes within the interrupt handler
until we reach 4 bytes. Internal calls to member functions within the interrupt
handler generates new stack frames, which should be limited in embedded systems.

5.5 Temperature sensor

This section presents the implementation of the temperature sensor device driver
in Tock for nrf51 that builds on the design presented in Section 4.4.4. The device
driver consists mainly of four different modules within Tock: temperature sensor
library, temperature sensor capsule, temperature sensor HIL and temperature sensor
hardware module for nRF51.
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Figure 5.4: Tock temperature sensor device driver implementation The
figure shows the entire temperature sensor device driver. To the left, blue boxes are the parts
of the user applications which initiate the temperature sensor device driver and then runs an
infinite loop to measure the temperature one time per second. In the middle, green boxes are
the temperature capsule and the temperature HIL. Note, that the HIL itself do not implement
any modules, it only defines an interface. To the right, the red box configures and starts the
temperature sensor.

5.5.1 User application
The user application is a sample application with the purpose to demonstrate and to
verify that the temperature sensor device driver works. The blue parts of Figure 5.4
illustrate the user application. It utilizes the temperature sensor library to initialize
the temperature sensor and to perform temperature measurements. To read from
the sensor, the driver requires a one-time initialization. After the initialization, the
user application can read an arbitrary number of temperatures. The kernel signals
that the reading is complete by firing a callback. This sample application reads
from the temperature sensor and sleeps for one second. It also prints the value to
the serial interface in the callback routine. This process repeats in an infinite loop
until the system is shut down.

5.5.2 Library
The library provides two functions:

• temperature_init(callback) wraps a subscribe call which sets a callback func-
tion that the kernel calls when a new temperature reading is available.

• temperature_measure() wraps a command call that initiates the temperature
measurement.

5.5.3 Capsule
The responsibility of the capsule is to provide the user application with temperature
measurements. To acquire the measurements, the capsule must interact with the
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hardware module. Once a temperature reading is available, the capsule sends this
to the user application. Only one user application can request readings from the
temperature sensor at the same time, which the capsule ensures. The capsule is
implemented on top of the example capsule. Figure 5.4 illustrates the driver and
the green parts mark the capsule.

5.5.4 Hardware module
The hardware module manages all interactions with the hardware, i.e., the tem-
perature sensor. Figure 5.4 illustrates the hardware module in red. To enable the
measurements, the hardware module initiates and starts the temperature sensor on
the chip. Once a reading is available, the chip triggers an interrupt. The driver
provides one sample per measurement. It is up to the user application to request
more values to measure over time or to simply get more samples.
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6
Evaluation

In this chapter, we present the evaluation of the device drivers in Tock compared
to the current state-of-the-art embedded operating system and discuss the results.
The evaluation creates the base to answer the following research questions:

• Is Rust suitable for programming device drivers for embedded operating sys-
tems?

• How does an embedded operating system implemented in Rust compare to
current state-of-the-art implementations in C and C++?

As Tock aims to be more secure and reliable than the current state of the art
embedded operating systems, we evaluate what the cost for this is in terms of power
consumption and performance. Further, the chapter is divided into three sections, in
the first Section 6.1, we present the evaluation framework that includes methods on
how to evaluate power consumption and performance which include both software
and hardware configurations. Second, in Section 6.2 we present and discuss the
measurement results from the evaluation framework. Third and finally, in Section 6.3
we zoom out and reflect on the bigger picture regarding Tock, Rust, and other
relevant topics.

6.1 Evaluation setup
We compare our device drivers in Tock with similar implementations in three other
state-of-the-art embedded operating systems: ARM mbed [30], Apache Mynewt [31]
and Zephyr [32]. These are embedded operating systems with the following proper-
ties:

• open source
• BLE support for nRF51
• AES-128 counter-mode support
• implemented in C/C++
• favor security and reliability
• support for many popular IoT processors and development kits

Table 6.1 shows the versions of the evaluated embedded operating systems. The rest
of this section describes the different frameworks and approaches for the evaluation.
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Embedded operating system Kernel version
Apache Mynewt 1.0.0
mbed 5.4.0
Tock d215e792
Zephyr 1.6.0

Table 6.1: Software versions

6.1.1 Power consumption
Power consumption in IoT devices is very important due to the nature of the de-
vices, i.e., they should consume little power to be able to run on battery for a very
long time, thus an evaluation of the power consumption is essential. nRF51-DK
provides two pins for measuring the current power consumption of the processor.
The pins are located after the voltage regulator to enable accurate results. The
board requires a few small modifications to enable the measurement. By cutting
a soldering connection, current will flow through the measuring pins instead of via
the previous soldering connection. A 10-ohm’s resistor between these pins finalizes
the modification which enables measuring the voltage drop over the resistor. The
voltage drop by itself is not the standard unit for measuring the power consumption.
A more standardized unit is watt; hence we convert the voltage drop into watt with
the following formula:

P = (Uvoltagedrop

R10ohm

) ∗ Usupplyvoltage (6.1)

Measuring with good precision is only possible when running on the battery, rather
than powered by USB [33]. Therefore, power consumption measurements are only
performed when a battery powers the nRF51-DK. We mainly want to measure the
power consumption during a specified period, i.e., to both measure the average power
consumption and the instantaneous power consumption. To do this, we use two ex-
ternal tools, the Saleae Logic - 8-Channel USB Logic Analyzer1 and an oscilloscope.
Both tools provide a sampling rate over 1 kHz which provides enough measurement
data to calculate the average power consumption.

6.1.1.1 BLE

This section presents the user application and the configurations used during the
evaluation. As wireless communication is an important part of IoT devices, the eval-
uation focuses on the BLE driver to measure and compare the power consumption.
All the operating systems in the evaluation have support for sending periodic BLE
advertisement packets.

Since the radio consumes significantly more power in contrast to other peripheral
devices and operations on the processor, the configurations have to be the same
or similar across all evaluated operating systems. Four settings are important for

1http://downloads.saleae.com/Saleae+Users+Guide.pdf
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power consumption in BLE: the advertisement interval, the transmission size, the
transmission power, and the advertisement type [34]. The advertisement interval is
the time between transmission. This property specifies how many times the radio
should be active throughout a given time interval and thus it is important for the
power consumption of the system. An advertisement interval can be set to between
10 milliseconds and 10 seconds. With a 10 milliseconds interval, the radio consumes
a lot of power but enhances performance in applications such as localization. On the
other hand, 10 seconds reduces the power consumption but would not be good for
localization or pairing. For this evaluation, all systems have a similar advertisement
interval of approximately 150 milliseconds.

The size of the packet to transmit affects the time the radio must be active to finish
each transmission. A larger packet size requires the radio to be on for a longer time
compared to smaller packets. 22 bytes constitute the payload size of the PDU type
for all tests and transmission on all three channels take approximately 2 milliseconds.

Transmission power manages the range of the signal. A higher transmission power in-
creases the range that the radio can reach but increases power consumption. nRF51
has eight settings for transmission power with a range from -30 dBm to +4 dBm.
The current consumption varies between 5 mA to 15 mA between the highest and
lowest transmission power [35]. In most of the evaluated systems, 0 dBm have been
default, hence all systems use this value.

The last parameter which influences the power consumption is the advertisement
type. An advertisement can either be connectable or non-connectable. Connectable
advertisements, even though they are not connected to, activates the radio in re-
ceiving mode to listen for incoming connections. This means that the radio will be
active for a longer time compared to the non-connectable advertisement that never
activates the radio in receiving mode. Finally, all device drivers send advertisements
every 150 milliseconds during a 10 seconds’ interval.

Throughout the measurement, the power consumption between each advertisement,
i.e., idle mode, will play a significant role in the average power consumption. To
compare the different parts of the power consumption, we evaluate them separately.
Idle power consumption is the power consumption between advertisement cycles
where we assume that the CPU does not execute anything important. To get the
idle data, we manually select it with the logic analyzer. Since we do not know when
the idle mode stops and the radio starts, we separate the idle power consumption
and radio power consumption from the total power consumption. By separating the
measurements, we can argue about the results and suggest further improvements.
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6.1.2 Performance
There is no built-in setting or tool to measure performance on nRF51-DK. By per-
formance, we refer to the time it takes for an operation to complete. Evaluating
performance requires a more hands-on approach compared to how we measure power
consumption. The GPIO pins on the development board provide a simple way to
measure performance with good precision. By setting a pin high when an operation
starts and low when it stops, it is possible to calculate the time between the high
and low voltage with, for example, an oscilloscope. This enables measuring and
comparing different implementations.

6.1.2.1 AES128 counter mode

To evaluate the performance of the AES-128 counter mode device driver in Tock
we compare it to other AES-128 counter mode implementations in terms of execu-
tion speed by encrypting data of different sizes. The different implementations are
Apache Mynewt, ARM mbed, and Zephyr. All the evaluated embedded operating
systems rely on encryption in software, except Tock. The software encryption in the
other operating systems utilizes two different libraries: mbed TLS [36] and Tiny-
Crypt [37]. Table 6.2 shows the methods for encryption for the different operating
systems.

Embedded OS AES128 counter mode options
Apache Mynewt mbed TLS

mbed mbed TLS
Tock hardware
Zephyr mbed TLS

TinyCrypt

Table 6.2: Comparison AES-128 counter mode

The evaluation compares software and hardware implementations of AES128 counter
mode which are two very different approaches to perform encryption. The evalua-
tion is still interesting as we evaluate the following aspects:

• hardware encryption with counter mode in software compared to its counter-
part in software

• differences between different software implementations
• the performance of the different operating systems

The advantage of a software implementation is that it does not require any system
calls and context switches. In the hardware implementation, the hardware must be
provided with the input and it must be transferred or shared via one or more system
calls from the user application to the kernel. However, the software implementation
still needs to send the data to the kernel for further process, e.g., transmitting the
data via radio, which a hardware implementation does not need since the data is
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already accessible to the kernel. Additionally, a disadvantage with encryption in
hardware is that the implementation must provide functionality to encrypt more
bytes than the hardware can encrypt at once. In an event-driven embedded operat-
ing system, a hardware implementation is also more attractive because it does not
block the entire kernel. In other words, once data is being encrypted, other tasks
can execute until the encryption task is finished.

In order to evaluate all the different configurations for the different operating sys-
tems, we use six different user applications. The basic functionality of the user
applications are to set a GPIO pin high, encrypt data and set the GPIO pin low
after the encryption. The time between the high and low GPIO pin, which we
measure with an oscilloscope, determines the execution speed. We conduct three
measurements for each of the operating systems with different sizes: 64 bytes, 512
bytes, and 1024 bytes. Each measurement consists of 10 encryption rounds and we
use the average time of these encryptions as the results. We did not include the
initialization of AES and configuring of the key because in Tock, it only introduces
a system call overhead and in the other operating systems it is only function call
overhead which is much smaller.

6.1.2.2 System call overhead

To evaluate the different operating systems without any external peripherals or op-
erations, we measure the system call overhead. The time it takes for a system call to
return after the user application invokes it determines the overhead. We argue that
measuring the system call overhead is a good method to determine the overhead
of the operating system since this is how fast the kernel can switch between user
space and kernel space, and in other words, react to requests and system calls. The
overhead affects tasks such as scheduling and context switching. To measure the
overhead, we use one of the simplest drivers: the GPIO driver. By using a simple
driver, we do not rely on any external process which could make the results less
consistent. Embedded systems are generally I/O bound which means that the CPU
spends more time to wait for I/O than performing computational heavy tasks. Nev-
ertheless, we argue that this metric is good to compare the efficiency of the different
operating systems.

We introduce four different user applications in each operating system respectively
which toggle a GPIO pin 10,000 times and then we measure the execution time. A
division of the results with 10,002 (including two additional operations for the mea-
surement) returns the average execution time of a system call. Toggling of a pin in
some operating systems can require more system calls since it might require a read
call to get the current status from the GPIO. Therefore, in all user applications,
we implement our own toggle function by using the underlying function to set the
GPIO pin low and high. A boolean variable determines whether to set the GPIO
pin high or low.
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6.2 Results
This section presents and discusses the results of the measurements. We discuss
and compare the device drivers in Tock to the state-of-the device drivers in Apache
Mynewt, ARM mbed, and Zephyr in terms of power consumption and performance.

6.2.1 BLE power consumption
As described in Section 6.1.1.1 we measure the power consumption during 10 seconds
of BLE advertisements. Each advertisement consists of three transmissions where
Figure 6.1 visualizes one advertisement cycle. Furthermore, we divide the results
into three different parts where all of them show the average power consumption:
the total power consumption (both idle mode and during transmission), idle and
radio transmission.

Figure 6.2 shows the results of the three aforementioned parts during approximately
66 BLE advertisements. Mynewt has the highest total average power consumption
and the difference between Mynewt and Tock is about 0.5 mW. mbed consumes
almost half as much as the other operating systems. During transmission, i.e., when
the radio is active, the average power consumption is highest in Tock and lowest in
mbed. In idle-mode, mbed consumes significantly less, a factor of approximately 10,
than the other operating system. Mynewt consumes most in idle and approximately
0.5 mW more than Tock and Zephyr.

6.2.1.1 Discussion

During the measurement of the operating systems, we found negative values in the
data set. We argue that this is because the power consumption is sometimes so low
that current in capacitors get discharged and “returns”. Approximately 80 % of the
measured values in mbed are negative, whereas the rest of the measurements in the
other operating systems contain less than 1 % negative values. When processing the
results, we set all negative values to 0 and we argue that this is the fairest approach
since both including them and removing them would affect the results in a strange
way.

The results show that mbed is far superior to the other systems both in terms
of average power consumption during advertisements and in idle mode. What is
interesting is that mbed has an extremely low power consumption while in idle.
This affects the results heavily since the time it takes to send a packet is very short
compared to the time that the operating system is idle, hence the idle power con-
sumption has a big impact on the results. The large power consumption in idle
mode for Mynewt can be the result of keeping the radio on for a longer time than
necessary and not powering it off. Another explanation can be that the Mynewt
keeps the UART active throughout the measurement. The UART provide real-time
logging of the status of the BLE stack and we did not manage to disable this feature.
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Figure 6.1: Tock power consumption during one advertisement. The figure
shows the characteristics for the power consumption for one advertisement. During transmission,
the power consumption increases which the spikes symbolize. The three spikes show the transmis-
sions on the three advertisement channels. The y-axis shows the power consumption in mW and
the x-axis shows the time in milliseconds.

We also see that the power consumption while transmitting advertisements is sig-
nificantly lower in mbed. Mynewt, Tock and zephyr have approximately the same
power consumption and the consummations only differ in a few mW but Tock con-
sumes the most.

From the results, we learn that it is important to configure the processor to go
into deep sleep while not operating. It also shows that our concerns with the con-
figuration of the radio and advertisement are important since this is most likely the
reason for the high power consumption in Tock while advertising. We conclude that
it is important to investigate the use case of the device and to configure it correctly
to achieve optimal power consumption.

6.2.2 AES performance
Figure 6.3 shows the results of the execution time for AES128 counter mode in the
different configurations in each operating system, further described in Table 6.2.
mbed TLS is the fastest and the operating system has minor impact on the results.
Hardware encryption in Tock is about 4 times slower than mbed TLS and TinyCrypt
is about 10 times slower than mbed TLS.
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Figure 6.2: Embedded OS comparison BLE average power consumption.
The y-axis shows the average power consumption in mW and the x-axis shows three different metrics
of the average power consumption per operating system during BLE advertisements. The red bar
shows the total average power consumption, the blue bar shows the average power consumption
during the active time of the radio, and the green bar shows the average power consumption only
during idle mode.

6.2.2.1 Discussion

The first result to highlight is the difference between AES in hardware and software.
Surprisingly, the hardware implementation in Tock is slower than mbed TLS. How-
ever, it is not surprising that the hardware implementation is slower but that is four
times slower is worth noticing.

The results of the comparisons of TinyCrypt and mbed TLS is quite interesting.
TinyCrypt is about 10 times slower than mbed TLS despite both implementations
rely purely on software without system calls and context switches. This shows
that the implementation plays a much bigger role in terms of performance than the
operating system itself. Since studies and implementations of cryptography have
been extensively studied in the past, it is surprising that the implementations differ
so much. The results also show that the execution speed of mbed TLS in mbed,
Mynewt and Zephyr is more or less the same. This shows that the operating system
plays a very little role when it comes to software implemented encryption. One
reason for this is most likely due to that such tasks does not require any additional
kernel involvement, e.g., system calls, because they execute in user space.
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Figure 6.3: Embedded OS comparison execution speed AES-128 counter
mode The y-axis is the execution time for AES-128 counter mode in milliseconds. The x-axis is
the operating system and (m) is an acronym for mbed TLS, (t) is an acronym for TinyCrypt, and
(h) is an acronym for hardware encryption in Tock. Furthermore, the green bar is 64 bytes payload
size. The blue bar is 512 bytes payload size and the red bar is 1024 bytes payload size. The results
show that mbed TLS library is the fastest, around 4 times faster than the hardware implementation
in Tock and around 10 times faster than TinyCrypt. In the software implementations, the different
operating systems have a minor impact on the execution speed.

To conclude, we discuss the advantages and disadvantages of hardware encryption
in Tock. The advantages with hardware encryption are twofolded. First, it does not
block the kernel from performing other tasks during encryption. This is especially
attractive in event-based operating systems where tasks are executed until comple-
tion. Second, it allocates less memory because everything is performed in hardware.
When it comes to disadvantages, they are twofolded. First, hardware encryption is
not hardware independent and requires different implementations for different chips,
which a software implementation does not need. This makes the implementation
less portable and requires more maintenance during hardware upgrades. Second,
hardware encryption is slower than software encryption.

We think that there are limited use cases for encrypting bigger payloads than 1024
bytes and even during such a large encryption, it only takes 8 milliseconds to com-
plete. Therefore, it will only block an event-based operating system for 8 ms while
encrypting 1024 bytes data which should be affordable in our opinion. Thus, we con-
clude that a software-based implementation for AES128 counter mode is superior to
the hardware based implementation.
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Figure 6.4: Embedded OS comparison average execution time of a system
call. The y-axis is the execution time for one system call in µs and the x-axis is one for each of
the operating systems. The results show that Mynewt is the fastest, mbed, and Zephyr are around
5 times slower and Tock is around 24 times slower. Tock stands out in this comparison and one
reason is that the context switch assumes there exist an MPU which requires about 100 extra clock
cycles.

However, we did not conduct any experiment regarding different hardware encryp-
tion. The case can be that the AES chip on nRF51 is slow compared to other
processors with built-in encryption. We have not seen any numbers on how fast the
AES chip of nRF51 is, but based on our estimation it is approximately 62.5 kB/s.

6.2.3 System call performance results
This section presents the average time to execute a system call. 10,000 system calls
lay the base for the average calculation. Figure 6.4 shows the differences between
the systems where Mynewt outperforms the other operating systems and Tock is
the slowest by a big margin.

6.2.3.1 Discussion

Figure 6.4 shows a big difference between Tock and the other operating systems
where Tock is approximately 5 times slower than the competitors. A conversion to
clock cycles (1 µs corresponds to 16 clock cycles) shows that the fastest system call
takes 16 clock cycles compared to Tock where a system call requires 384 clock cycles.
The results are not surprising because Tock introduces several layers along with
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that each user application is executed as its own separate process, which increases
the overhead. In addition, Tock assumes that each processor has an MPU which
introduce approximately 100 clock cycles in overhead in the context switch which
corresponds to 6.25µs on nRF51. Note that the MPU of nRF51 is not supported
by Tock because the MPU does not provide sufficient granularity, hence all MPU
instructions are NOP’s. Regardless whether an MPU is present or not, the context
switch is significantly higher in Tock. Even though the differences are quite big in
terms of percentage, the values are relatively small. In most applications, the system
call overhead that Tock introduce would probably not be critical. 20 µs is a very
short time and most often, the waiting for other peripheral devices or operations
takes longer time which makes the system call in most cases neglectable.

6.3 Discussion
In this section, we discuss the experience by developing device drivers in Tock.
The section is divided into two parts. First, we discuss our experience by learning
and using Rust. Second, we discuss our experience by using Tock as an embedded
operating system for developing device drivers.

6.3.1 Rust
As Rust is a relatively new programming language, it is not commonly used by stu-
dents and “regular” developers. We belong to these categories and hence we had
very little experience with Rust before starting this thesis. It has, however, been
both an interesting and rewarding journey to learn Rust.

Rust enables safety guarantees by default, which increase development time for
novice Rust developers. Safety guarantees include borrowing, lifetimes and owner-
ship, and together they introduce a very steep learning curve. It can take some time
to pass the learning curve and to become productive in Rust. One of the safety guar-
antees is the ownership paradigm which is very different in contrast to our earlier
experiences. Passing variables by value to functions requires more thinking than in
a “normal” programming language since Rust transfers ownership of the variable to
the invoked function. The advantage of these strict rules is that once the Rust code
compiles it executes reliable, i.e., crashes are rare, and thus, we have experienced
very few runtime errors which is an attractive property for operating systems. The
compiler is however helpful and informative; it gives hints about what is wrong and
how to make it right. One example of such a compiler error is “error borrow ’foo’
as mutable more than once at a time” and it tells the user that foo can only be
borrowed mutable once at the time which is helpful.

Although Rust has many positive sides, changing or learning a new programming
language overnight is not an easy task, especially not when programming embedded
devices which are generally more complex than general applications. The commu-
nity of Rust often claims that the learning curve is quite steep. It takes some time be
proficient and to work with the compiler rather than against it, but once achieved,
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it is very rewarding. Most functionality of C exists in Rust; hence it can be an
alternative to use Rust instead of C. Rust will not replace C overnight but if it
gains traction and popularity it is fully capable of doing so. A transition from C to
Rust would increase the reliability and security of many applications and simplify
development in many cases.

6.3.1.1 Unsafe Rust

To be a fully compatible system programming language, unsafe Rust plays an impor-
tant role since for example, it enables direct modification of registers in a processor.
By separating the safe and unsafe code with blocks it becomes very clear where the
code can crash and it helps developers to understand why a given operation is safe
or unsafe. The compiler also helps since it will prevent code that is unsafe and warn
about code that is safe but is still within an unsafe code block. This can decrease
the number of unsafe code blocks, which is good since ideally, Rust code should
contain as little unsafe code as possible to be reliable and secure.

6.3.1.2 State machines

By combining the enums, structs, and traits, one can build finite state machines
in Rust. The compiler can then verify the state transitions at compile time. For
example, consider a state machine with three states: Off, On and Sending. Assume
it has two valid state transitions: Off → On and On → Sending. All other state
transitions such as Off → Sending are not valid. By conforming different types in
Rust the compiler can then verify whether a state transition is valid or not. An
invalid state transition would result in a compiler error. In such a simple state ma-
chine a compile time varification may not be particularly useful. However, in more
complex state machines, for example as in the BLE, protocol such functionality is
attractive. Verification of the state machine at compile time would catch faulty state
transitions early on and decrease time spent on debugging. This feature introduces
no runtime overhead since the compiler manages everything.

An equivalent solution in C or C++ would require runtime checks to determine
whether a state transition is valid or not. Another way is to, way simple but yet
common, put inline comments that warn the user that the radio must be powered
on before configuration.

6.3.2 Tock
Tock is expanding rapidly with both active maintainers and community. In the be-
ginning of the project, a lot of documentation was missing and changes in the build
system increased the difficulty of the already complex task to extend an embedded
operating system with device drivers. We have spent time to research how to debug
and patch existing debugging tools. However, the amount of documentation and
tutorials is increasing, which can help new developers to get into Tock much faster
and easier. Once one pass the first big hurdles, Tock becomes quite easy to under-
stand and to extend.
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For a relatively young and small project, Tock performs very well or on par with the
state-of-the-art embedded operating systems according to our benchmarks. How-
ever, these results are just benchmarks, for many applications and developers the
availability of support, high reliability and security are probably worth more than
the execution speed in many cases.

6.3.2.1 Tock architecture

The architecture of Tock is probably one of the most promising and interesting
parts with regard to how it takes advantage of the safety features of Rust. With
the separation of capsules and hardware modules, the system becomes both easier
to maintain and less prone to crashes. Rust provides safety to the capsules with
no runtime overhead, i.e., capsules cannot crash due to memory corruption, since
they do not use unsafe Rust. In a system without these features, the same level of
safety would require the “capsules” to run in separate processes and communicate
via IPC in order to achieve the same level fault isolation but with a higher runtime
overhead and memory requirement. The increased memory usage would probably
be too big for most embedded systems, especially if all device drivers were statically
allocated. Another architectural feature is that user space applications run in sepa-
rate processes protected by an MPU. In a sense, the MPU is a lightweight MMU that
prevents user space applications from operating in other memory than its dedicated
memory and this protects other applications as well as the kernel from a malicious
or faulty user application. Thus, a malicious or faulty user space application can
never crash the Tock kernel. We argue that this design is very attractive when it
comes to reliability and security.

In comparison to the current design of state-of-the-art embedded operating sys-
tems, we argue that in theory, they are not as reliable and secure as Tock. This is
mainly due to two reasons: 1) they are implemented in a memory unsafe language
such as C/C++ 2) many of them have no memory corruption protection at all be-
cause the kernel and user space share the same stack and thus a buffer overflow can
crash the entire kernel. However, this does mean that the current state-of-the-art
is insecure by default. The implementation itself is probably more important and
they are probably implemented with defensive programming principles in C/C++.

A nice aspect of the safety features of Rust is that one can be more fearless. The
developer does not need to worry about the code crashing nor to have null checks
all over the code.

Tock naturally contains unsafe Rust but compared to the current state-of-the-art
embedded operating systems it contains significantly less unsafe code segments. C
or C++ code is equivalent to unsafe Rust, hence all code in the current state-of-
the-art embedded systems is unsafe. Tock limits unsafe Rust to small parts of the
core of the kernel and there are even flags in the compiler to refuse the use of unsafe
code outside these predefined regions. This makes it far more obvious where Tock
can crash.
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6.3.2.2 Resource allocation

As Tock does not support dynamic allocation, resources are statically allocated
where the only exception is for user space applications which Tock can load at run-
time. They run outside the kernel with restricted privileges but can dynamically
allocate resources. Relying on the static allocation of resources have both advan-
tages and disadvantages. One advantage is that the compiler analyzes and verifies
all code in Tock to increase reliability, security, and performance by compiler opti-
mization. We argue that these properties are essential to provide reliable and secure
kernel modules because dynamic loading means that these can have been written
in C, C++, assembly or similar. Moreover, Swift et al. [38], also report that load-
able extensions are the leading cause of operating system failures. We see this as
an indication that static allocation is favourable for reliability. SIPs in Singularity
further described 3.1, shares the design where it does not allow self-modification of
the code and dynamic loading.

On the other hand, one disadvantage is that Tock statically allocates all capsules
and hardware modules at compile time, and deallocation is not possible. The al-
location also includes some internal buffers in the kernel. For example, to provide
functionality to encrypt a payload of 1 kB, the kernel requires 1 kB of RAM extra.
This is not ideal for embedded systems since the RAM is rather limited and when
many device drivers require dedicated static buffers, the kernel will require more
RAM. The allocations are however platform dependent, i.e., each platform requires
individual allocation of capsules and hardware modules. That means that the al-
location is only specific for each platform, e.g., nRF51-DK, and thus, Tock does
not allocate device drivers that are not available for the chosen platform. As an
example, it is not possible for an application to only allocate the BLE device drivers
and nothing else without recompiling the Tock kernel. This design requires more
memory since Tock allocates all modules independently regardless whether they are
needed or not. This can turn into a problem if the number of capsules increases,
then the processor might not have enough memory to load them all. In the end,
this would result in customization of the kernel to meet different requirements.

6.3.2.3 Debugging

Debugging in Tock has been a burdensome experience compared to the current state-
of-the-art embedded operating systems. At first, there were no debugging symbols
available in the Rust cross compiler. Debugging without debugging symbols is not
very easy. In later versions, however, they are now available. Despite that debugging
symbols now are available, nRF51-DK has too little memory for them anyway. This
implies that gdb only provides ARM assembly, which at least for the authors of
this thesis has been a difficult task to benefit from. Moreover, to debug the code,
one must put annotations to prevent compiler optimizations and to ensure that the
linker keeps symbolic names of functions in order to be able to assign breakpoints
to them.
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There are now great tutorials on the Tock homepage explaining this in more detail.
Throughout the project, debugging by inserting panics have been the most used
debugging technique. This has been quite time consuming but now there is a debug
macro which can print to the serial interface which greatly improved the debugging.

6.3.2.4 Implementation

Embedded systems are mostly event-driven and can end up in a scenario where
multiple mutable references to an object are needed. The Rust compiler prevents
such scenarios because race conditions can occur in multi-threaded environments.
As Tock is single-threaded these checks are unnecessary for safety, which means that
the compiler rejects valid single-threaded programs. Therefore, a workaround for
this in Tock is the TakeCell data structure which prevents the compiler to check for
race conditions. The TakeCell can only be consumed once, after that it becomes
None. An attempt to consume a TakeCell which is None will generate a runtime
error. However, we have used TakeCell extensively to be able to share the contents
of buffers between user space and kernel space without many crashes. We think that
the TakeCell forces us to be more careful in our implementations and to ensure that
it is not None. In a sense, this is very similar to check whether a pointer is null in
other unsafe languages. Most of the crashes we have encountered have been due to
consumption of an empty TakeCell. This means that a bad implementation with
the TakeCell can crash the kernel and reduce the reliability of Tock. We consider
two approaches to fixing this problem: 1) replace the TakeCell with an empty data
type internally in the TakeCell when it gets consumed 2) create a deep copy of the
object instead of transferring ownership.
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7
Conclusion

This chapter summarizes and concludes the thesis. Most of the conclusions are on
a higher lever and with a broader perspective when compared to the discussions in
the previous chapters.

In this thesis, we contribute to the open source community with designs and im-
plementations of device drivers for Tock. The device drivers enable foremost con-
nectivity via Bluetooth low energy and security primitives via AES128 encryption,
but also random numbers via a true random generator and usage of a temperature
sensor. BLE and AES128 drivers have a high value for embedded systems as both
connectivity and security increase in popularity. We show that designing and devel-
oping device drivers for embedded systems in Rust work well with the safety features
in Rust by the successful implementation of device drivers. This answers the first
research question if Rust is suitable for programming device drivers for embedded
operating systems and we argue that Rust is fully capable as a systems program-
ming language for IoT. The evaluation shows that Tock is on par with the current
state-of-the-art embedded operating systems when it comes to power consumption.
In terms of performance there is an overhead but in many cases, embedded systems
are I/O bound. We conclude that power consumption has a bigger role and impact
and Tock is doing well according to such metrics. This answers research question
two, how does an embedded operating system implemented in Rust compare to cur-
rent state-of-the-art implementations in C?

We argue that Tock is a good platform for IoT devices and a worthy contribu-
tion to the embedded operating systems’ family. Many applications would benefit
from running a more reliable and secure embedded operating system and with the
small overhead of Tock, there is no reason not to use it. For non-kernel develop-
ment, Tock is easy to use out of the box. Source code for existing applications is
available which can be modified to fit a specific use case. A regular developer, i.e.,
an application developer with very little systems programming knowledge, can set
up and run applications relatively easy. The possibility to write user applications
in C enables an easy transition from other embedded operating systems while in-
creasing the reliability and security with the Tock kernel. As Tock now supports
user applications in Rust, even the user applications can benefit from the security
features of Rust.
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We have encountered very little problems with the design and implementation of
Tock as an operating system. Most components, e.g., system calls and hardware
abstractions, are available as one might expect from an embedded operating system.
The most troublesome aspects are to share data between user space and kernel space.
This includes accessing static arrays by reference in nested data types. For a novice
Rust developer, the nested data types required can seem a bit obscure but it increases
throughput as entire buffers do not need to be copied to the kernel.

7.1 The future of Tock
Tock is still missing some essential features to “compete” with current state-of-the-
art embedded operating systems, such as a complete network stack and support for
more hardware platforms. In our opinion, the highest priority in Tock should be a
complete network stack in Rust. Tock now supports 802.15.4, which is a step in the
right direction. It is, however, possible to run other network stacks outside Tock,
but for reliability and security implementations purely in Rust is beneficial. Our
contribution with the BLE driver is a start to provide more connectivity to Tock.
Hopefully, more work to this driver can result in a more sophisticated BLE stack.
The work includes direct connections, rather than just advertisements, security, i.e.,
authentication to connections and support more PDU types.

It would also be interesting to see support for real-time constraints to compete with
RTOS’s. Safety-critical applications would especially benefit from Rust and Tock
since potential memory corruption issues can endanger human lives. By relying
on memory safety, one can facilitate and simplify the development of safety-critical
software. These are applications that require high reliability and more sophisticated
development processes which the type-system in Rust can simplify. As these safety-
critical applications are becoming connected, the threats against these applications
increase. Therefore, we consider that Tock is a good candidate to use when relia-
bility and security are essential. Support for real-time constrained applications can
increase the attention to Tock since the need for reliable and secure systems is in-
creasing, especially when the technology regarding autonomous cars progresses. To
further increase the popularity of Tock (and in some cases Rust), it is also important
that more tools (compilers and development environments) for embedded systems
become available in Rust. To conclude, we think that Tock can compete with the
current state-of-the-art embedded operating systems if development continues and
more hardware gets supported.
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7.2 Ethics and sustainability
In this thesis, we evaluate and implement safe device drivers in Rust and Tock for
the Internet of Things. The increasing number of connected devices, makes safety,
privacy, and reliability important, especially if big parts of our society rely on them.
The fact that we monitor our lives to a larger extent, for example, our health and
physical activities, exposes our privacy. With insecure implementations of IoT, hack-
ers can exploit the implementations and gain an understanding of our lives. Insecure
devices can also be used to attack companies or countries. Potentially, the concepts
in this thesis can prevent accidents that endanger human life in safety-critical sys-
tems and also increase privacy by reducing the risk that malicious parties will get
access to our private data.

Further, by evaluating the power consumption, we highlight that it is an impor-
tant metric for sustainability with the increase of global warming in mind. Thus,
manufacturers and customers need to think about energy consumption and not just
performance when developing IoT devices.
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