' CHALMERS | (@Y%) UNIVERSITY OF GOTHENBURG

UNIVERSITY OF TECHNOLOGY

Defining a minimal BLE stack

A Bluetooth Low Energy implementation in Rust

Master’s thesis in Computer Systems and Networks

Francine Makela
Johan Lindskogen

Department of Computer Science and Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
UNIVERSITY OF GOTHENBURG

Gothenburg, Sweden 2018

MASTER’S THESIS 2018

Defining a minimal BLE stack

A Bluetooth Low Energy implementation in Rust

Francine Méakela
Johan Lindskogen

Department of Computer Science and Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
UNIVERSITY OF GOTHENBURG
Gothenburg, Sweden 2018

Defining a minimal BLE stack

A Bluetooth Low Energy implementation in Rust
Francine Makela

Johan Lindskogen

© Francine Makela, Johan Lindskogen, 2018.

Supervisor: Olaf Landsiedel
Examiner: Philippas Tsigas

Master’s Thesis 2018

Department of Computer Science and Engineering

Chalmers University of Technology and University of Gothenburg
SE-412 96 Gothenburg

Telephone +46 31 772 1000

Cover: An illustrative representation of a Bluetooth stack.

Typeset in BTEX
Gothenburg, Sweden 2018

v

Abstract

Today, Internet of Things (IoT) has spread to many everyday situations. The smart
devices constituting IoT can be everything from your smartwatch, to components of
your car or nodes collecting environmental data in a building. It is not uncommon
for these devices to be powered using limited sources, such as batteries. This means
that they have to be conserved with their energy.

One way for these devices to communicate is via Bluetooth Low Energy (BLE),
a wireless protocol specifically designed to consume less energy than the classic
Bluetooth protocol.

In this master’s thesis, we aim to find the minimal BLE stack required for a
device to advertise its existence and for it to enter a connection with another device
and keep that connection alive. To check whether our definition holds we present a
design and implementation of it in Tock, an operating system for embedded devices.
As Tock is written in the programming language Rust, so is also our implementation.

The evaluation of the implementation includes two parts. The first part is a
validation of the behaviour of a device running our code. We perform different tests,
each focusing on a particular behaviour that is required from the device. Next, we
conduct performance tests to measure the reliability, power consumption and timing
of the device.

Our evaluation shows that the implementation fulfils the requirements, even
though the performance tests reveal that it is not optimised. As the implementation
is a mirror of the design, which in turn is a possible description of the definition of
the minimal stack, we conclude that our definition states precisely what is required
to fulfil the goal of “establish and keep a connection”.

Keywords: BLE, Bluetooth low energy, IoT, Rust, Tock, Embedded systems.

Acknowledgements

We want to thank our supervisor Olaf Landsiedel for excellent mentoring and sup-
port during the project. Amit Levy, Niklas Adolfsson and the other people from the
Tock community for answering our Tock-specific questions. We also want to thank
our examiner Philippas Tsigas for his support. Lastly, we want to thank the people
who act as peer reviews of this report and opponents at our presentation.

Francine Makeld & Johan Lindskogen, Gothenburg, June 2018

vii

Contents

List of Figures
List of Tables

1 Introduction

1.1 Problem Statement,
1.2 Contribution
1.3 Delimitations
1.4 Key Results o
1.5 Thesis Outline
2 Background
2.1 The Hardware Platform
2.2 Rust
221 Embedded Rust
222 Ownership
2.2.3 Enums and Associated Values
2.3 Tock
2.3.1 System Architecture
2.3.2 Scheduling
233 System Calls Lo
2.4 Bluetooth Low Energy
2.4.1 The Link Layer
2.4.2 Establishing a Connection
3 Related Work
3.1 Apache Mynewt
3.2 Contiki
4 Design
4.1 BasicFlow
4.2 Definition of a Minimal Stack
4.3 Overview of System Architecture
4.4 Layer Responsibilities and Communication
4.41 Link Layer
4.4.2 Hardware Module
443 BLEcapsule. oo

xi

xiii

15
15
17

19
19
19
21
21
22
22
22

ix

Contents

451 tx_end.
4.5.2 rx_start
453 rx_end.
4.5.4 advertisement done
4.5.5 Discussion e

5 Implementation

5.1 Overview e
5.2 Hardware Module
5.2.1 Redesigning the Hardware Module
5.3 Introducing a Link Layer
5.4 Transmit/Receive Flow o L.
5.4.1 Transmit Advertisement
5.4.2 Receive Advertisement
5.5 Scheduling and Timeouts
5.6 Connection Driver
5.7 Developing with Rust
5.7.1 Expressiveness.o
5.7.2 Encapsulationo
5.7.3 Mutabilityo
5.7.4 Discussion

6 Evaluation
6.1 Test Setup
6.2 Validation

6.3 Performance Testing
6.3.1 Setup
6.3.2 Reliabilityo
6.3.3 Power Consumption
6.3.4 Timing oL
6.3.5 Discussion

7 Conclusion
7.1 Conclusion

7.2 Future Work

Bibliography

4.5 Hardware Module Events

27
27
28
29
30
31
32
32
33
34
34
35
35
36
36

37
37
37
44
44
44
45
49
o1

53
53
54

55

2.1

2.2

2.3

4.1

4.2

5.1

0.2

6.1

6.2

6.3

6.4

List of Figures

The memory of a process in Tock. Figure is from the paper "Multi-
programming a 64 kB Computer Safely and Efficiently" [1].
Bluetooth Low Energy Link Layer state machine and all the permitted
transitions. L L L L
The link layer packet format.

Comparison of Tock BLE stack before (left) and after (right) our
design was implemented. L.
A flow chart showing the order of different events emitted by the
hardware module.o

The different events generated when the radio transmits a packet.
When a packet is received, the same events are generated but with
RX instead of TX. Figure is from "nRF52832 Objective Product Spec-
ification” [2].
An ADDRESS event causes the radio to generate an interrupt. This in
turn triggers the process of validating the received packet.

Screenshot from Wireshark showing when the device acts as an ad-
vertiser. The device, called "TockOS", is sending packets on all the
primary advertising channels in the right order, as the green area
shows. It also successfully replies to a scan request from another
device, within roughly 150 ps, as the red area shows.
Screenshot from Wireshark showing the start of a connection. The
upper red line highlights a packet in which the more data (MD)-bit
is set, which is shown as True in the second to last column. As
the vertical green line shows, this packet is received by the slave on
channel 30. The slave does as expected and stays on the channel until
it has received another packet from the master.
This figure shows how the master informs the slave that they are
about to change channel map. The red line shows the packet that
contains the new channel map
Graph showing Tock’s power consumption during its active time pe-
riod of an advertising event. The higher peaks (the first, third and
fifth) represents when the radio is in TX mode, while the lower peaks
(the second, fourth and sixth) is times when the radio is in RX mode.
The average value is highlighted in orange.

21

X1

List of Figures

6.5 Bar chart comparing power consumption of Apache Mynewt and

TockOS during different events in advertising. 48
6.6 Bar chart comparing power consumption of Apache Mynewt and

TockOS during different events in connection. 49
6.7 Bar chart comparing the ratio of packets received across the response

time for the packet. Extreme values are not included in the figure. . . 50

xii

2.1
2.2
2.3

List of Tables

Comparison of nRF hardware with modern, everyday devices. 6
The five types of system calls supported by Tock 9
The different advertising event types, and whether they can be di-

rected and/or undirected. Lo Lo 13

xiii

List of Tables

Xiv

1

Introduction

Internet of Things (IoT) take more and more place in our lives, and not many can
doubt its usefulness. Connecting smart devices, i.e., devices with the capability
to collect data, making calculations with the data and communicate with other
devices, opens up the possibility to simplify our lives in many ways. These devices
can be used in critical applications, such as collision avoidance systems in vehicles,
thereby increasing the safety in our everyday lives. Other applications are non-
critical and only exists due to their convenience or the entertainment they provide.
An example of this could be a refrigerator that informs us when we are about to
run out of milk. For this connection to be possible the connected devices needs
a way to communicate, via Wi-Fi or Bluetooth Classic for example. Both Wi-Fi
and Bluetooth Classic have their advantages, but none of them is optimised for
applications with tight constraints on energy usage [3, 4]. For example, devices
that run on a coin cell battery cannot afford the relatively high energy usage of
Bluetooth Classic [3]. A more suitable option for this setting is to use Bluetooth
Low Energy (BLE). BLE is the result of an initiative by Nokia, which was adopted
by the Bluetooth Special Interest Group, and eventually included in the Bluetooth
specification in late 2009 [5]. This new communication protocol can run for years on
devices powered by coin cell batteries [5], which makes the technology an appealing
choice for devices with constraints on energy consumption.

The limited amount of energy available is not the only thing that makes em-
bedded devices tricky to work with; memory capacity can also be an issue. This,
of course, puts pressure on the programming language to either be efficient in this
regard or to grant the programmer more control. For this reason, C is still a widely
used programming language among embedded systems [6], but there are new com-
petitors; one of these is Rust. The language is developed with systems programming
in mind and therefore tries to handle issues that often arise from these kinds of sys-
tems. Rust promises to challenge the efficiency of C but also gives the programmer
guarantees of memory safety and no race conditions. Furthermore, Rust is designed
to catch errors at compile-time rather than at run-time, which makes debugging
more manageable, particularly since it might not be easy to do in embedded sys-
tems.

These attractive attributes of Rust interested researches at Stanford University
when they were to start their implementation of an operating system for embedded
systems that would aim for stability and security [1]. The project, named Tock, is
described in Section 2.3.

1. Introduction

1.1 Problem Statement

Until last year, Tock did not have a BLE stack. During the spring term of last year,
Nilsson and Adolfsson started implementing a BLE stack as a part of their master’s
thesis [7]. As a result, Tock got support for advertising and passive scanning. For
applications that have more advanced use-cases, this will not always be enough, as
these applications need to keep track of with whom they are communicating.

This would prompt the need for implementing support for connections, but
we find the definition provided in the Bluetooth specification too broad for simple
applications. Therefore, we provide a new definition with no more than what is
needed to establish and keep a connection.

1.2 Contribution

In the process of solving what is defined in the problem statement (Section 1.1),
it is relevant for us to validate that our definition covers enough functionality, and
therefore we choose to implement it for Tock.

As performance is of great importance in embedded systems, we also describe
our experience of using Rust for the implementation and argue whether the pro-
gramming language is a reasonable choice for implementing BLE. Furthermore, we
compare the performance and energy consumption of our final implementation to
that of existing BLE implementations in C.

This master’s thesis contributes with the following:

o A description of a “minimal BLE stack”, containing the parts necessary for
establishing a connection.

o A design and implementation of the "minimal BLE stack" for a device with
limitations on the available energy.

o A discussion whether Rust is suitable for implementing BLE.

e A comparison of both energy efficiency and performance to that of an imple-
mentation in C.

1.3 Delimitations

The goal of this thesis is to present the minimal stack; therefore we will exclude
multiple types of advertising that do the same thing and are therefore redundant.
This is the motivation for why we chose only to take the simpler of the flow of
establishing a connection into consideration.

Our minimal stack also only cover allowing incoming connections, since this is
the role with lesser responsibilities and that is more commonly assumed by the type
of device supported by Tock. The communication is not encrypted, as this adds
additional complexity.

1. Introduction

1.4 Key Results

This thesis produces a definition of a minimal stack. We argue that it only needs
the two lower layers of the standard BLE stack to establish an keep a connection.
We provide a Rust implementation that demonstrates this for a fact and evaluate
the power consumption and other measurements. By choosing Rust we get the
opportunity to explore this promising young language in the context of embedded
programming, and in particular, using it for building a BLE stack.

A summary of our evaluation follows:

o The reliability of the BLE stack is similar to that of Mynewt.

e Measurements of the power consumption shows that our implementation in
Tock has an overall lower energy consumption during advertising, even if it
is higher during peaks. Over a connection interval, the power consumption is
slightly higher than that of Mynewt.

e In a connection, the time from when the device receives a packet to when
it replies is within the range of + 1ps from what is stated in the Bluetooth
specification.

1.5 Thesis Outline

This thesis is divided into eight chapters that are structured to successively give
the reader a deeper understanding of the project. Chapter 2 starts by describing
what hardware we use, the Rust programming language, Tock and Bluetooth Low
Energy. In Chapter 3, we present two competing operating systems for embedded
devices, both implemented in C, and we make a short comparison between them
and Tock. We define our interpretation of a minimal BLE stack and present our
design in Chapter 4, while Chapter 5 describes how it is implemented. This chapter
also covers a discussion of Rust’s suitability for a Bluetooth stack. After that, we
present what method we use for evaluation of the system and our results in Chapter
6. The thesis ends with a summary and conclusions of some key parts of the thesis
in Chapter 7.

1. Introduction

2

Background

This chapter introduces elements that are needed to get a clear picture of our project,
including the hardware that is used during this thesis and the advantages of using
this particular hardware. It introduces Rust and its features so that the reader can
understand how they are used in Tock when the operating system is presented in
the following section. Lastly, we describe the parts of BLE needed to follow along
when reading about the design in Chapter 4.

2.1 The Hardware Platform

This thesis uses a nRF52 development kit from Nordic Semiconductor as target
development hardware. The development kit supports a few different hardware
chips, but the one we are using is the nRF52832 System-on-a-Chip.

The nRF52832 is a chip with a modern 32-bit ARM Cortex-M4F processor [8].
Together with the CPU, the chip also contains 64 kB of RAM and a flash memory
of 512kB and a 2.4 GHz Bluetooth Low Energy antenna.

It compares well to other chips with regards to energy efficiency [9]. Energy
efficiency is of great importance for embedded devices as they often require long
times of unattended operation.

Compared to the previous version of the development kit, nRF51, the nRF52
has considerably improved the start-up time, or “ramp-up time”, of the Bluetooth
antenna and the radio chip that is controlling it. The ramp-up time has gone from
140 ps down to 40 ps [2], which is a substantial improvement and it is especially useful
in Bluetooth when the replies sometimes need to be sent within short windows of
time, see Section 2.4.

To further help with these timing constraints, the nRF51 and nRF52 provide
the developer with a set of hardware shortcuts. These shortcuts can be used to bind
events and tasks together in the hardware by programming what decision should
be taken beforehand, at an instant during non-timing-critical periods, and thereby
avoiding a potentially slow decision to be made during periods when a reaction is
expected within microseconds. Both boards also have support for calculating the
checksum (CRC) of every packet sent or received at the hardware-level which also
eliminates a slow operation during critical periods.

In Table 2.1, the nRF52 is compared to other devices to give a better under-
standing of its computing power.

2. Background

Device CPU speed | RAM
nRF51 32 MHz 32kB
nRF52 32 MHz 64 kB
OnePlus 5 2.45 GHz 6 GB
MacBook Pro 2017 2.9 GHz 16 GB

Table 2.1: Comparison of nRF hardware with modern, everyday devices.

2.2 Rust

We will do the programming part of this thesis in the relatively young language,
Rust. The language is only three years old, version 1.0 was released 2015, but has
gained a following for its unique approach to memory management and type safety.

2.2.1 Embedded Rust

Rust in the context of embedded programming is still in its early stages, but this
modern language has many advantages to older ones traditionally used for embedded
programming, like C.

The Rust language and its compiler is more powerful, catches more errors at
compile-time, and thereby prevents run-time errors. This is especially convenient for
embedded programming since run-time errors are hard to debug without designated
debugging equipment.

Rust also promises zero-cost abstractions, that allows the programmer to add
type-safety checks and structure the code in a more straight-forward way with no
additional run-time cost. Most of these abstractions will be flattened into highly
optimised code with high performance at compile-time.

2.2.2 Ownership

Rust has a strong concept of ownership; there can only be one owner of a particular
variable at a time. Every time a variable is assigned to another, or when a function
gets called with a variable, the ownership of that value is handed over. Changing
ownership means that all previous references get invalidated.

In particular, the rules are that there can either be many immutable references,
i.e. with read access only, to a variable, or one mutable reference, i.e. with read
and write access. The borrow checker is the feature responsible for enforcing these
restrictions.

This feature prevents race conditions and is one of the more powerful features in
Rust since race conditions are generally hard to track down in other programming
languages.

6

2. Background

2.2.3 Enums and Associated Values

Another useful language feature of Rust are enums and associated values in enums.
An enum represents a discrete type, a type with only a finite set of values.

An example of this is the Option type in Rust. It is used to represent the
presence or absence of a value, by its variants Some(value) or None. Option ac-
complishes this by using associated values, i.e. the value that is present in the
Some (value) variant. A variable of type Option can only unwrap its associated
value if it has a value. With this construct, Rust circumvents references to null
values, or null pointers, a common problem for many other languages.

2.3 Tock

Tock is a new operating system that is designed to provide a safe multiprogramming
environment for software development on embedded devices [1]. In particular, the
problems Tock is trying to solve can be summarised as follows:

Dependability - Embedded system might need to run for a long time without
interference from a human user as they might be placed in locations where they
are not easily reached, or that their user interface is limited.

Concurrency - If I/O tasks are scheduled concurrently on an operating
system the microcontroller can spend more time in its sleeping state. Less
energy is needed this way [10].

Efficiency - Embedded devices have much lower memory capacity than a
personal computer. Therefore caution must be taken on how the memory is
shared between different parts of the system, such as between the kernel and
user-space applications.

Fault isolation - Failure in one part of a system should not cause other
parts to fail as well.

Loadable application - Users can install applications with no need to re-
program the entire kernel.

Through a combination of the type- and memory-safety features of Rust, modern
hardware safety features, and the system architecture of Tock, the operating system
manages to provide all five of these items.

2.3.1 System Architecture

The architecture of Tock separates the code of the operating system into capsules and
processes, depending on whether they are a part of the kernel or user applications,
respectively. The capsules lie in the kernel and are written in Rust to take advantage
of the memory- and type-safety features of the programming language. Each capsule
consists of a Rust module, which includes an instance of a struct, its associated
methods and static variables that all make up the module itself.

2. Background

—(—)

grant grant

s gy

25 || <

» o> || _heap RAM ||| heap
3 & data data Process
= tack tack Accessible
o g stac . stac Memory

[_text Flash | [text

Figure 2.1: The memory of a process in Tock. Figure is from the paper "Multipro-
gramming a 64 kB Computer Safely and Efficiently" [1].

Capsules A capsule can either be considered trusted or untrusted, depending on
what type of capsule it is and what its responsibilities are. Most of the capsules are
considered untrusted and are therefore not allowed to read from or write directly to
the memory of another capsule or process. This constraint is enforced by Rust’s in-
herent isolation of modules, which prevents external modules from accessing private
methods, as explained in Section 2.2. Only capsules that need direct access to the
hardware are considered trusted. These capsules make use of Rust’s keyword unsafe
to perform necessary operations that are usually prohibited by the memory-safety
model, such as allocating memory at specific addresses.

Processes For user programs to be able to be loaded dynamically at run-time,
an alternative separation than capsules is needed. In Tock, this separation is called
a process. The processes keep user programs physically separated in the hardware
rather than by language features like the capsules do. As a benefit, the programmer
can implement applications for Tock in any language of their choosing since the
processes do not rely on Rust’s module separation as a safety feature.

A process can communicate with the kernel via a system call interface, and other
processes via inter-process communication (IPC), in which a process can share a
memory region with other processes.

Each of the processes is assigned a region of memory which is separated from
the memory of the kernel and the other processes. As in other operating systems,
the process keeps its stack, heap and other process-related information in this mem-
ory region (see Figure 2.1). However, unlike other operating systems, the memory
contains an additional component known as a grant. The grant is used by a capsule
that needs to allocate memory during run-time to serve a request from a process.

Even though the grant resides in the address space of a process, the process
cannot access this memory region. If this would be possible, the process could
tamper with the capsule’s data, which would break the security model. The capsules,
on the other hand, can read and modify data inside the grant through a limited

8

2. Background

System call

command

allow

subscribe
memop
yield

Table 2.2: The five types of system calls supported by Tock

programming interface. By leveraging Rust’s type-system, Tock can ensure that
references created inside of a grant cannot be moved out of the grant.

2.3.2 Scheduling

Tock uses an event-driven kernel scheduler where the events originate from either
system calls, which are sent from the processes, or from interrupts, which are sent
asynchronously by the hardware. A capsule communicates with another capsule
by directly calling its public functions or by sharing memory. All capsules share
a common stack and are scheduled cooperatively by the kernel, which means that
every task runs until its completion. As a consequence of this, long-running capsules
will degrade the performance of other capsules.

The scheduling of processes differs from the scheduling of capsules. Since the
processes have separate stacks they can be scheduled preemptively, that is, run-
ning concurrently. Tock is using the simple but effective round-robin scheduling
algorithm. Preemptive scheduling allows a process to perform lengthy executions
without causing any adverse effects for other processes.

2.3.3 System Calls

There are five types of system calls in Tock which provides an interface for processes
to communicate with the kernel. The system calls are listed in Table 2.2.

The command system call is used by a process to request the kernel to perform
a particular task. It takes an integer as a parameter which decides what task the
kernel should perform.

The system call allow is used to ask the kernel to perform a task which needs
a more complex parameter than just an integer. In a sentence, it allows the kernel
access to a part of the process’s memory space.

If a process wants to be notified when a specific event occurs in one of the
capsules, it can use the subscribe system call. Upon calling subscribe the process
passes along a callback function as a parameter, which will be called when the event
in question occurs.

The yield system call is required to serve queued callbacks. If the callback
queue is empty when yield is called the calling process is blocked. As soon as
a callback is placed on the queue, control is returned to the registered callback
function. After the callback function returns, the process resumes execution at the

2. Background

place where the yield call was issued.
There is also a system call known as memop which handles memory boundaries
for processes.

2.4 Bluetooth Low Energy

Bluetooth Low Energy (BLE) supports wireless communication in the 2.4 GHz ISM
(Industrial, Scientific and Medical) band, which is divided into 40 channels [11].
Three of these channels (37, 38 and 39) are the primary advertising channels. They
are used by devices that have not established a connection with another device.
The primary advertising channels are spread over the band and are separated by
several other channels. The reason for this is to minimise interference from one
advertising channel to another. The remaining 37 channels are used by devices as
secondary advertising channels, and for communicating data after a connection has
been established, they are therefore called data channels. By applying frequency
hopping, BLE reduces the risk that congestion on one channel might cause packets
to get lost. Reducing the risk is necessary since BLE shares the band with other
protocols, for example, classic Bluetooth and Wifi.

The BLE stack is divided into three parts: application, controller and host. The
latter two are parts of the Bluetooth core system. Both the controller and the host
block is further divided into smaller blocks, or layers, with different responsibilities.
The controller communicates directly with the hardware and has more critical timing
constrains that it needs to fulfil, while the host does not have such constraints.
Optionally, the two layers can be separated by a layer known as host controller
interface (HCI) which passes information between the upper and lower parts of the
stack.

The controller contains two layers: the link layer and the physical layer. The
following two subsections focus on describing the role of the link layer; different roles
a device can assume; and how a connection is established.

2.4.1 The Link Layer

The link layer is responsible for keeping track of the current operation state of the
BLE host; it also keeps track of what actions are allowed in each state. Essentially,
the link layer state machine has the following five states: [12]:

Standby state - the device is idle, i.e. it is not sending, nor receiving, any
packets. This state can be reached from any of the other four states, and a
device in the standby state can move to all other states, except the connection
state.

Advertising state - the device is sending packets to advertise its existence.
It might also listen for and reply to requests from other devices. A device in
this state is called an advertiser.

Scanning state - the device is listening for packets sent by advertisers, and
might also reply to them. A device in this state is called a scanner.

10

2. Background

Advertising Initiating

Figure 2.2: Bluetooth Low Energy Link Layer state machine and all the permitted
transitions.

Initiating state - the device wants to create a connection with another device,
and are therefore listening for packets sent by this/these device/devices. A
device in the initiating state is referred to as an initiator.

Connection state - the device has been connected to another device. This
state can be reached from both the advertising and the initiating state. Within
this state, a device can have one of two roles: if entered from the initiating
state the device will operate as a master, else it will operate as a slave. The
device which assumed the master role is responsible for selecting the different
parameters used in the connection, and to communicate them to the slave.

The link layer can have several state machines to keep track of multiple parallel
modes of operation, such as connections with multiple peers at the same time. Each
of the state machines can, in turn, only be in one of the states. At least one of
the state machines must support either the advertising state or the scanning state.
Figure 2.2 shows the different states of the link layer state machine, and how it can
move between them.

Packet Format

Depending on which state the link layer is in it will send either advertising channel
packets or data channel packets. Devices that have established a connection com-
municates via data channel packets, but up till that point they are using advertising
channel packets. Both of these packets have the same format and, as can be seen

11

2. Background

Preamble Access Address PDU CRC
(1 or 2 octets) (4 octets) (2 to 257 octets) (3 octets)

Figure 2.3: The link layer packet format.

in Figure 2.3 has four mandatory fields. The fields we will focus on are the access
address field and the PDU (Protocol Data Unit) field.

The access address field contains a four-byte long address. In the advertising
state, when advertising channel packets are used, all packets carry a predefined
advertising access. After two devices have established a connection, they change
their access address to identify what packets belong to their connection and use
that address in the access address field. It is the responsibility of the initiating
device to generate a random access address that is only used within that specific
connection, and communicate this address to the peer device before the connection
is established in a designated connection request packet.

What the PDU field of a link layer packet contains depends on if the packet
was transmitted on an advertising channel or a data channel. Both of the PDU
types carries a header and a payload, but what these fields contain differs. While
the advertising channel PDU holds information about the advertiser, the contents
of the data channel PDU can be both empty, to serve as an acknowledgement of
receiving another packet, or contain requests or replies to requests of data during
the connection.

Advertising State

As an advertiser, the device follows a sequence of sending advertising packets on all
or a subset of the three advertising channels before it becomes idle for a predefined
amount of time. If the device broadcasts advertisements of the scannable type, it
will listen for and respond to scan requests from other devices before changing to
the next channel. Each sequence of sending advertisements is called an advertising
event. The time from the start of one advertisement event to the beginning of its
following event is called advertising interval and is a period of between 20 ms and
about 10000s.

An advertiser does not necessarily have to advertise on all of the three primary
channels, but each advertising event has to be sent on the channels in ascending
order, i.e. if channel 37 and 38 are used the device shall advertise on channel 37
before channel 38. Furthermore, if the advertiser receives a connection request or a
scan request, the advertising event might end earlier.

An advertising packet can be of one of several types and indicates what kind
of requests the advertiser will respond to if any. The advertising events can be
one of the following types: scannable; connectable; connectable and scannable; and
non-scannable and non-connectable. The event type which is both connectable and
scannable can only be undirected, but the remaining three exists as both directed
and undirected events. If undirected events are used, anyone is allowed to reply to
the advertisements, while directed adds a restriction on who is allowed to send a

12

2. Background

Advertising event type Directed | Undirected
Scannable X X
Connectable X X
Scannable & connectable - X
Non-scannable & non-connectable X X

Table 2.3: The different advertising event types, and whether they can be directed
and/or undirected.

request to the advertiser.

Most of the advertising types require the time spent on each channel to be
no longer than 10 ms. For some of the advertising types, it is also required that
the advertiser can start to receive packets 150 ps after the last advertisement was
sent. If the received packet was a request, the advertiser must also be able to
start transmitting a response within 150 ps from the time when the reception of the
request was finished.

Scanning State

Just like the advertiser, a scanning device jumps between the primary advertising
channels, but its timing requirements differ from that of the advertiser. Two pa-
rameters have to be specified to the scanner: a scan window which tells how long
the scanner will listen on a channel, and a scan interval which is the time from the
start of one scan window to the start of its succeeding scan window.

A scanner can either be passive and only listen for advertising packets, or be
active and respond to scannable advertising PDUs. The use-case decides which
of the modes should be used. If the scanner wants the extra information that the
advertiser offers it should send a scan request back. The response to the scan request
will be sent in a scan response PDU. Until the scanner receives a scan response from
the advertiser, it will assume the packet was lost and will continue to send scan
requests as replies to the subsequently received advertisements.

As an active scanner contributes to congestion on the channels, it is required
to use a backoff procedure to reduce the risk of collisions between packets. The
Bluetooth specification does not specify an exact algorithm for the procedure, but
the algorithm has to respect that the advertising channels are a shared medium.

Initiating State

An initiator acts very much like a scanner, but with the intention of connecting to
another device. To create a connection, an initiator sends a connection request as a
response to a connectable advertising PDU.

The connection request sent by the initiator contains parameters that will be
used by the two devices to keep the connection alive, such as information about
what channels they are going to communicate over and in what order. When the
advertiser receives a connection request, and the connection is created, the initiator
assumes the master role and the advertiser the slave role detailed in the next section.

13

2. Background

2.4.2 Establishing a Connection

A connection can either be considered created or established. Directly after two de-
vices have entered the connection state as described in Section 2.4.1, the connection
is said to be created. Not until a device receives a packet from its peer device is
the connection said to be established. As previously mentioned, the initiator of the
connection has the master role and is responsible for timing in the connection. The
other device is known as a slave.

The connection is driven by so-called connection events. In a connection, data
PDUs are sent instead of advertising PDUs. The devices jump between channels
from the channel map field specified in the connection request PDU sent by the
initiator. How this changing of channels is done are specified by a channel selection
algorithm [12]. Within a connection event, the master and the slave are taking turns
of who is sending and who is receiving. The exchange of packets within a connection
event takes place on the same channel. If any of the two devices want to send more
than one packet during a connection event, it indicates so by setting a bit called
MD (more data). Not until after the connection event is finished, the master and
the slave moves to the next channel.

Every connection event starts with the master transmitting a packet, and ends
when neither of the two devices wants to send anything more, but no later than
150 ps before the next connection interval [12]. The length of the connection interval
is specified in the connection request sent by the master and is used to synchronise
the master and the slave after they have changed channel between two connection
events. As the master initiates each connection event, the least that can happen
during a connection event is the transmission of that single packet. The slave is
required to transmit a packet whenever the master sends something, except if the
CRC match fails two times in a row within the same connection event. If that
happens, the event should be closed. The master is always allowed to send another
packet, no matter whether the CRC is correct or not, as long as the slave replies.

A data PDU header contains two bits which are used for acknowledgement of
data packets. One bit is used as the sequence number (SN) of the packet. The other
bit indicates what SN a device expects to get next from its peer, and is therefore
called next expected sequence number (NESN) [12]. As the NESN bit can represent
no more than a single packet, only one packet at the time can be acknowledged, and
therefore a device has to continue to resend a packet until the peer acknowledges it.

Several things affect the performance of a connection, and it might get lost
without any warning. To avoid being trapped in an already lost connection, both
the master and the slave keeps track of how long time has passed since they last
received a packet from their peer. If that number gets to large, the device will end
the connection and enter the standby state.

14

3

Related Work

Tock has many competitors in the field of operating systems aimed for embedded
devices [13, 14, 15]. For Tock to compete with these, it should have advantages in at
least some areas when it is compared to other operating systems. In this chapter, we
briefly present two other operating systems and compare their BLE implementation
with that of Tock.

3.1 Apache Mynewt

Apache Mynewt is an open source operating system for IoT devices which, along with
other protocols, supports communication via BLE [16]. The BLE implementation,
named NimBLE [17], supports the full BLE stack. The implementation even includes
an HCI layer, which allows the user to exchange the host or controller part of
NimBLE with hardware or software provided by another vendor [18].

Even though Mynewt as an operating system supports several different boards
[19], the BLE controller supports only Nordic Semiconductor’s nRF51 and nRF52
[20], as only drivers for these has been implemented. On the other hand, the host
implementation can run on any of the boards supported by Mynewt.

The link layer in NimBLE can adopt all of the five states specified in the Blue-
tooth Specification [18]. An advertiser can be either connectable or non-connectable,
and in the same way, a scanner can either have the intention of connecting to an
advertising device (act as initiator) or just listen for packets. Further, NimBLE
allows a device to act in several roles concurrently, and a connectable advertiser can
be in several connections at the same time.

The controller of a BLE stack contains, as mentioned in Section 2.4, a link layer
and a physical layer. In NimBLE, the code for the link layer is grouped into several
files, as what should be done depends on the current state of the link layer state
machine [21]. For example, functions that are unique for an advertiser is grouped
together in its own file. One example of how this is used can be seen in Listing
1. Here, a function that is common between the link layer states is called when
the radio has started to receive a packet. This function uses a switch statement
to determine in what state the link layer is in and then calls its counterpart in the
corresponding link layer.

Apache Mynewt also provides some example projects, which allow a user to
play and learn how to use NimBLE [17]. In the evaluation of our implementation in
Section 6, we compare against the example project called 'bleprph’, which is a basic
implementation of a BLE peripheral.

15

3. Related Work

void rx_start() {
switch (link_layer_ state) {
case STATE_CONNECTION:
conn_rx_start();
break;
case STATE ADVERTISING:
adv_rx_start();
break;
case STATE_INITIATING:
init_rx_start();
break;
case STATE_SCANNING:
scan_rx_start();
break;

Listing 1: When the radio has started to receive a packet, the link layer in NimBLE
switches on the link layer state to see where the packet should be forwarded. This
code is a simplified version of the real NimBLE code [22].

Discussion

NimBLE is a complete implementation of the full BLE stack, which means that all of
the host layer and the controller layer is supported. In contrast, our implementation
of BLE in Tock provides only a controller layer, as Section 4 discusses. As a result,
NimBLE has a wider range of use cases. For example; a layer called L2CAP is
responsible for the fragmentation of packets, meaning that NimBLE can send larges
packets than our implementation supports.

One similarity between the two BLE implementations is that both of them opted
to write their own BLE stack for nRF52 to fit the operating system, rather than
using the driver provided by Nordic Semiconductor.

The NimBLE controller supports both nRF51 and nRF52, while we choose to
only focus on the nRF52 board. This choice comes partly from an advise we got
from one of the researches at Stanford, who told us that they are going to phase out
the older version of the board.

Another difference between NimBLE and our BLE stack is of course that while
NimBLE is implemented in standard C, we are using Rust as the programming
language.

NimBLE has yet another advantage over our BLE implementation: it supports
concurrent connections. Even though we are not actively working to include support
for this, we still strive to structure the code in such a way that it could be relatively
easy included in future versions of the BLE stack.

16

3. Related Work

3.2 Contiki

Contiki is an open source operating system for embedded devices which was de-
veloped to meet the hard constraints of sensor networks [23]. Sensor nodes need to
exchange and forward data within the network, which Contiki enables by supporting
communication protocol such as IPv4, IPv6 and 6LoWPAN. The operating system
allows for downloading and removing applications at run-time, both manually and
over the air [23], and due to the low power requirements, it can run wireless relay
nodes on batteries [13].

Like Tock, Contiki supports several hardware devices, among them the nRF52
[24].

Contiki does not have its own full BLE implementation for nRF52; instead,
the operating system relies on the SDK and a “softdevice” provided by Nordic
Semiconductor.

Michael Spork [25] presents the work of creating a stack which supports IPv6
over BLE. This would enable devices with tight energy restrictions to communicate
over the internet via just a BLE interface. The idea takes advantage of the fact
that IPv6, and IP in general, is not dependent on the upper or lower layers of the
protocol stack [26]. By substituting the IPv6 link layer with the BLE link layer,
also two devices using different link layer protocol can communicate using IPv6.

The idea of having IPv6 running on top of BLE is not new, it is based on an
RFC [27, RFC7668], and there exist other implementations of it already. Spork
suggests that the importance of his work lies, partly, in that it is open source, in
contrast to other existing implementations. Allowing anyone to read and use the
code is valuable for further research, as one does not have to start from scratch if
one wishes to continue the work within the area.

In his thesis, Spork presents a general design for the stack which fits the archi-
tecture of Contiki, but that can be used together with any hardware running the
operating system. The design by Spork introduces an additional layer BLE-HAL,
that is not directly a part of the network stack of Contiki. This layer is responsible
for communicating with the BLE controller provided by the hardware, or if it is not
fully implemented, the BLE-HAL adds the needed functionality. This means that
the layer is hardware dependent and that what exactly is included in the BLE-HAL
depends on the hardware used and must be adjusted when porting to new hard-

ware. To the rest of the network stack, the layer provides functions similar to the
HCI layer in a BLE stack.

Discussion

Our BLE implementation in Tock and the one in Contiki differs in the way that they
approached supporting different parts of the BLE stack. We have aimed at imple-
menting the BLE controller, i.e., the lower layers, while Contiki relies on this part to
be handled by the softdevice provided by Nordic Semiconductor. Therefore a direct
comparison between the two is challenging to make, as their BLE implementation
for nRF52 is not open source.

In relation to our work, the interesting part of Spork’s implementation is the

17

3. Related Work

BLE-HAL layer. Even though this layer might not add a massive amount of func-
tionality for the nRF52, as the board can be loaded with a BLE controller, it is
interesting in other aspects. His work shows us how a fully implemented BLE con-
troller can be used, both by other BLE host implementations as well as for other
purposes than was originally thought of.

Spork also mentions in his master’s thesis that one reason why the functions of
the BLE-HAL mimics those of a BLE HCI is that it will make the integration of
the BLE-HAL easier the if the BLE controller of the hardware comes with an HCI
layer. This layer is not mandatory in a BLE stack, and our implementation does
not provide such a layer, but with this reasoning in mind, we can see the benefits of
adding such a layer in the future.

18

4

Design

This chapter presents a high-level overview of our design, suited for the system
architecture of Tock. It is further described as a possible implementation in the
next chapter, Chapter 5. First, we describe our minimal stack, which goes into
detail about what our minimal stack contains, what parts we chose to include or
exclude and why we chose to do so. The system architecture section follows with
an overview of how the different modules in our BLE stack relate to each other and
how they communicate with each other. This chapter presents an answer to the first
goal of this thesis, as Section 1.1 specifies, namely the goal to provide "A definition
of a minimal BLE stack". How we choose to realise this definition into an actual
system design is also presented in this chapter.

4.1 Basic Flow

In this master’s thesis, we focus on enabling data exchange between two devices
using Bluetooth Low Energy. The minimal stack is derived from what is needed to
create, establish and keep a connection alive. For this task, a device has to perform
the following steps:

1. Advertise its existence
2. Receive a connection request from another device

3. Receive and reply to data packets from that device

The first step is required as a device must receive an advertisement for a device
before it is allowed to send a connection request to it. The second is what is required
to create a connection, and the third is what is needed to establish and keep the
connection.

4.2 Definition of a Minimal Stack

The Bluetooth specification states that the following is required from a minimal
BLE stack:

"A minimal implementation of a Bluetooth LE only core system covers
the four lowest layers and associated protocols defined by the Bluetooth

19

4. Design

specification as well as two common service layer protocols; the Security
Manager (SM) and Attribute Protocol (ATT) and the overall profile
requirements are specified in the Generic Attribute Profile (GATT) and
Generic Access Profile (GAP)." [28, p. 179]

To fulfil the basic flow in Section 4.1, we require no more than the two lower
layers, i.e. the link layer and the physical layer. The physical layer is needed
to send and receive data by communicating with the hardware. The link layer
ensures that the device behaves according to the Bluetooth specification, as there
are no guarantees that communication with other devices is possible otherwise. This
includes making sure that the device holds the timing constraints, switches between
transmitting and listening for packets at a proper time, to correctly interpret data
received and also to have knowledge of what should be done depending on what
packet was received.

The rest of the protocols mentioned in the minimal implementation from the
specification are services that operate on top of an existing connection. The Secu-
rity Manager is a service for secure pairing and encrypted connections [29]; both
are superfluous for the most basic device communication. Attribute Protocol and
Generic Attribute Profile are service discovery protocols used to identify what ser-
vices a device provides [29]. Service discovery is less critical if it is known beforehand
with what device the connection will be established.

From this argumentation it is clear that the scope of this master’s thesis does
not cover everything in the minimal stack outlined in the Bluetooth specification.
Instead, our definition is the following:

"The minimal Bluetooth Low Energy stack is defined as an implementa-
tion in which only a Link Layer and a Physical Layer are present."

Discussion

The definition differs quite a bit from the Bluetooth specification, as Section 4.2
describes. Fundamentally, the difference is that the purpose of the BLE stack in
the two definitions is not the same. The Bluetooth specification presents what has
to be included in the stack to enable meaningful communication over BLE. Our
definition, on the other hand, describes a BLE stack which will only be able to
create and establish a link layer connection.

In real-world use cases, the described BLE stack is not enough to satisfy the
requirements for communication with other devices. A specific example of this is that
most real-world data transfers would need some encryption, which is implemented
by the security manager. We exclude parts like ATT, GATT and GAP as we see
them as higher-level protocols that are more suitably implemented as a user-space
library, and is therefore outside the scope of this thesis.

From this, we conclude that our definition of a BLE stack indeed is a minimal
one for its use case.

20

4. Design

User Application User Application
BLE Capsule BLE Capsule «> Link Layer
Physical Layer Physical Layer

Figure 4.1: Comparison of Tock BLE stack before (left) and after (right) our design
was implemented.

4.3 Overview of System Architecture

Tock already had some support for BLE at the start of this thesis, even though
it was very limited. A device could either act as an advertiser that sends an ad-
vertisement on each of the advertising channels or as a passive scanner that listens
for advertisements, i.e., without responding to any of them. The implementation
consisted of three main components: BLE user library, BLE capsule and BLE hard-
ware module [7]. Together these three parts constitute the BLE device driver in
Tock. The user library hides the actual Bluetooth implementation from the user
application, and provide an easy way to start and stop advertising or scanning. The
hardware module is designed towards a particular piece of hardware and is respon-
sible for tasks like instructing the radio when it should transmit or receive, and to
set hardware timers, among others. The BLE capsule contains the logic that ties
the other two parts together and makes sure that the device acts according to the
Bluetooth specification.

With the new set of features that comes with a Bluetooth stack that supports
connections, the previous design was no longer flexible enough. As a result, we have
to refactor and extend the previous design to make it more flexible and to meet the
tight timing requirements of BLE.

Expanding upon the stack-like design, we decide to add a layer to closely match
the Bluetooth stack, and also further divide different parts of the BLE device driver’s
responsibilities into different modules. By keeping all changes inside the BLE kernel
code, the external interface is not affected. This means that the BLE capsule’s
system call interface towards the user application stays unchanged.

4.4 Layer Responsibilities and Communication

The BLE capsule acted previously as a sort of coordinator; it was the entering point
for a user application, and it communicated with the hardware module. In the
new design, these responsibilities remain, with an addition: the BLE capsule is also
responsible for the communication with a new layer called link layer, as Figure 4.1

21

4. Design

shows.

Even though the work of this thesis has come to increase the amount of logic in
the hardware module, most of the functionality related to the exchange of packets is
hardware independent, and so we have chosen to put this general logic in the BLE
capsule and the link layer. It is the link layer’s responsibility to make decisions on
the protocol level, to instruct the radio to transmit or receive or when it should
change the channel.

4.4.1 Link Layer

The idea of introducing a link layer is to encapsulate new, link layer specific, func-
tionality within it. Further, some decisions that currently is a part of the BLE
capsule are moved into this layer as well. This way, the BLE capsule have less
knowledge of how data should be interpreted and moves towards having an even
more coordinator-like role.

The link layer knows how the system should act as a response to all the different
events from the hardware, as it knows the link layer state machine, and what is an
acceptable response depending on the current state. As the hardware module only
communicates with the BLE capsule, the BLE capsule has to forward any request
or decisions aimed at the link layer. These requests are often about whether or
not a