
Defining a minimal BLE stack
A Bluetooth Low Energy implementation in Rust

Master’s thesis in Computer Systems and Networks

Francine Mäkelä
Johan Lindskogen

Department of Computer Science and Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
UNIVERSITY OF GOTHENBURG
Gothenburg, Sweden 2018

Master’s thesis 2018

Defining a minimal BLE stack

A Bluetooth Low Energy implementation in Rust

Francine Mäkelä
Johan Lindskogen

Department of Computer Science and Engineering
Chalmers University of Technology

University of Gothenburg
Gothenburg, Sweden 2018

Defining a minimal BLE stack
A Bluetooth Low Energy implementation in Rust
Francine Mäkelä
Johan Lindskogen

© Francine Mäkelä, Johan Lindskogen, 2018.

Supervisor: Olaf Landsiedel
Examiner: Philippas Tsigas

Master’s Thesis 2018
Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg
SE-412 96 Gothenburg
Telephone +46 31 772 1000

Cover: An illustrative representation of a Bluetooth stack.

Typeset in LATEX
Gothenburg, Sweden 2018

iv

Abstract
Today, Internet of Things (IoT) has spread to many everyday situations. The smart
devices constituting IoT can be everything from your smartwatch, to components of
your car or nodes collecting environmental data in a building. It is not uncommon
for these devices to be powered using limited sources, such as batteries. This means
that they have to be conserved with their energy.

One way for these devices to communicate is via Bluetooth Low Energy (BLE),
a wireless protocol specifically designed to consume less energy than the classic
Bluetooth protocol.

In this master’s thesis, we aim to find the minimal BLE stack required for a
device to advertise its existence and for it to enter a connection with another device
and keep that connection alive. To check whether our definition holds we present a
design and implementation of it in Tock, an operating system for embedded devices.
As Tock is written in the programming language Rust, so is also our implementation.

The evaluation of the implementation includes two parts. The first part is a
validation of the behaviour of a device running our code. We perform different tests,
each focusing on a particular behaviour that is required from the device. Next, we
conduct performance tests to measure the reliability, power consumption and timing
of the device.

Our evaluation shows that the implementation fulfils the requirements, even
though the performance tests reveal that it is not optimised. As the implementation
is a mirror of the design, which in turn is a possible description of the definition of
the minimal stack, we conclude that our definition states precisely what is required
to fulfil the goal of “establish and keep a connection”.

Keywords: BLE, Bluetooth low energy, IoT, Rust, Tock, Embedded systems.

v

Acknowledgements
We want to thank our supervisor Olaf Landsiedel for excellent mentoring and sup-
port during the project. Amit Levy, Niklas Adolfsson and the other people from the
Tock community for answering our Tock-specific questions. We also want to thank
our examiner Philippas Tsigas for his support. Lastly, we want to thank the people
who act as peer reviews of this report and opponents at our presentation.

Francine Mäkelä & Johan Lindskogen, Gothenburg, June 2018

vii

Contents

List of Figures xi

List of Tables xiii

1 Introduction 1
1.1 Problem Statement . 2
1.2 Contribution . 2
1.3 Delimitations . 2
1.4 Key Results . 3
1.5 Thesis Outline . 3

2 Background 5
2.1 The Hardware Platform . 5
2.2 Rust . 6

2.2.1 Embedded Rust . 6
2.2.2 Ownership . 6
2.2.3 Enums and Associated Values 7

2.3 Tock . 7
2.3.1 System Architecture . 7
2.3.2 Scheduling . 9
2.3.3 System Calls . 9

2.4 Bluetooth Low Energy . 10
2.4.1 The Link Layer . 10
2.4.2 Establishing a Connection . 14

3 Related Work 15
3.1 Apache Mynewt . 15
3.2 Contiki . 17

4 Design 19
4.1 Basic Flow . 19
4.2 Definition of a Minimal Stack . 19
4.3 Overview of System Architecture . 21
4.4 Layer Responsibilities and Communication 21

4.4.1 Link Layer . 22
4.4.2 Hardware Module . 22
4.4.3 BLE capsule . 22

ix

Contents

4.4.4 Discussion . 23
4.5 Hardware Module Events . 23

4.5.1 tx_end . 24
4.5.2 rx_start . 24
4.5.3 rx_end . 25
4.5.4 advertisement_done . 25
4.5.5 Discussion . 25

5 Implementation 27
5.1 Overview . 27
5.2 Hardware Module . 28

5.2.1 Redesigning the Hardware Module 29
5.3 Introducing a Link Layer . 30
5.4 Transmit/Receive Flow . 31

5.4.1 Transmit Advertisement . 32
5.4.2 Receive Advertisement . 32

5.5 Scheduling and Timeouts . 33
5.6 Connection Driver . 34
5.7 Developing with Rust . 34

5.7.1 Expressiveness . 35
5.7.2 Encapsulation . 35
5.7.3 Mutability . 36
5.7.4 Discussion . 36

6 Evaluation 37
6.1 Test Setup . 37
6.2 Validation . 37
6.3 Performance Testing . 44

6.3.1 Setup . 44
6.3.2 Reliability . 44
6.3.3 Power Consumption . 45
6.3.4 Timing . 49
6.3.5 Discussion . 51

7 Conclusion 53
7.1 Conclusion . 53
7.2 Future Work . 54

Bibliography 55

x

List of Figures

2.1 The memory of a process in Tock. Figure is from the paper "Multi-
programming a 64 kB Computer Safely and Efficiently" [1]. 8

2.2 Bluetooth Low Energy Link Layer state machine and all the permitted
transitions. 11

2.3 The link layer packet format. 12

4.1 Comparison of Tock BLE stack before (left) and after (right) our
design was implemented. 21

4.2 A flow chart showing the order of different events emitted by the
hardware module. 24

5.1 The different events generated when the radio transmits a packet.
When a packet is received, the same events are generated but with
RX instead of TX. Figure is from "nRF52832 Objective Product Spec-
ification" [2]. 28

5.2 An ADDRESS event causes the radio to generate an interrupt. This in
turn triggers the process of validating the received packet. 31

6.1 Screenshot from Wireshark showing when the device acts as an ad-
vertiser. The device, called "TockOS", is sending packets on all the
primary advertising channels in the right order, as the green area
shows. It also successfully replies to a scan request from another
device, within roughly 150 µs, as the red area shows. 39

6.2 Screenshot from Wireshark showing the start of a connection. The
upper red line highlights a packet in which the more data (MD)-bit
is set, which is shown as True in the second to last column. As
the vertical green line shows, this packet is received by the slave on
channel 30. The slave does as expected and stays on the channel until
it has received another packet from the master. 40

6.3 This figure shows how the master informs the slave that they are
about to change channel map. The red line shows the packet that
contains the new channel map . 42

6.4 Graph showing Tock’s power consumption during its active time pe-
riod of an advertising event. The higher peaks (the first, third and
fifth) represents when the radio is in TX mode, while the lower peaks
(the second, fourth and sixth) is times when the radio is in RX mode.
The average value is highlighted in orange. 47

xi

List of Figures

6.5 Bar chart comparing power consumption of Apache Mynewt and
TockOS during different events in advertising. 48

6.6 Bar chart comparing power consumption of Apache Mynewt and
TockOS during different events in connection. 49

6.7 Bar chart comparing the ratio of packets received across the response
time for the packet. Extreme values are not included in the figure. . . 50

xii

List of Tables

2.1 Comparison of nRF hardware with modern, everyday devices. 6
2.2 The five types of system calls supported by Tock 9
2.3 The different advertising event types, and whether they can be di-

rected and/or undirected. 13

xiii

List of Tables

xiv

1
Introduction

Internet of Things (IoT) take more and more place in our lives, and not many can
doubt its usefulness. Connecting smart devices, i.e., devices with the capability
to collect data, making calculations with the data and communicate with other
devices, opens up the possibility to simplify our lives in many ways. These devices
can be used in critical applications, such as collision avoidance systems in vehicles,
thereby increasing the safety in our everyday lives. Other applications are non-
critical and only exists due to their convenience or the entertainment they provide.
An example of this could be a refrigerator that informs us when we are about to
run out of milk. For this connection to be possible the connected devices needs
a way to communicate, via Wi-Fi or Bluetooth Classic for example. Both Wi-Fi
and Bluetooth Classic have their advantages, but none of them is optimised for
applications with tight constraints on energy usage [3, 4]. For example, devices
that run on a coin cell battery cannot afford the relatively high energy usage of
Bluetooth Classic [3]. A more suitable option for this setting is to use Bluetooth
Low Energy (BLE). BLE is the result of an initiative by Nokia, which was adopted
by the Bluetooth Special Interest Group, and eventually included in the Bluetooth
specification in late 2009 [5]. This new communication protocol can run for years on
devices powered by coin cell batteries [5], which makes the technology an appealing
choice for devices with constraints on energy consumption.

The limited amount of energy available is not the only thing that makes em-
bedded devices tricky to work with; memory capacity can also be an issue. This,
of course, puts pressure on the programming language to either be efficient in this
regard or to grant the programmer more control. For this reason, C is still a widely
used programming language among embedded systems [6], but there are new com-
petitors; one of these is Rust. The language is developed with systems programming
in mind and therefore tries to handle issues that often arise from these kinds of sys-
tems. Rust promises to challenge the efficiency of C but also gives the programmer
guarantees of memory safety and no race conditions. Furthermore, Rust is designed
to catch errors at compile-time rather than at run-time, which makes debugging
more manageable, particularly since it might not be easy to do in embedded sys-
tems.

These attractive attributes of Rust interested researches at Stanford University
when they were to start their implementation of an operating system for embedded
systems that would aim for stability and security [1]. The project, named Tock, is
described in Section 2.3.

1

1. Introduction

1.1 Problem Statement
Until last year, Tock did not have a BLE stack. During the spring term of last year,
Nilsson and Adolfsson started implementing a BLE stack as a part of their master’s
thesis [7]. As a result, Tock got support for advertising and passive scanning. For
applications that have more advanced use-cases, this will not always be enough, as
these applications need to keep track of with whom they are communicating.

This would prompt the need for implementing support for connections, but
we find the definition provided in the Bluetooth specification too broad for simple
applications. Therefore, we provide a new definition with no more than what is
needed to establish and keep a connection.

1.2 Contribution

In the process of solving what is defined in the problem statement (Section 1.1),
it is relevant for us to validate that our definition covers enough functionality, and
therefore we choose to implement it for Tock.

As performance is of great importance in embedded systems, we also describe
our experience of using Rust for the implementation and argue whether the pro-
gramming language is a reasonable choice for implementing BLE. Furthermore, we
compare the performance and energy consumption of our final implementation to
that of existing BLE implementations in C.

This master’s thesis contributes with the following:

• A description of a “minimal BLE stack”, containing the parts necessary for
establishing a connection.

• A design and implementation of the "minimal BLE stack" for a device with
limitations on the available energy.

• A discussion whether Rust is suitable for implementing BLE.

• A comparison of both energy efficiency and performance to that of an imple-
mentation in C.

1.3 Delimitations
The goal of this thesis is to present the minimal stack; therefore we will exclude
multiple types of advertising that do the same thing and are therefore redundant.
This is the motivation for why we chose only to take the simpler of the flow of
establishing a connection into consideration.

Our minimal stack also only cover allowing incoming connections, since this is
the role with lesser responsibilities and that is more commonly assumed by the type
of device supported by Tock. The communication is not encrypted, as this adds
additional complexity.

2

1. Introduction

1.4 Key Results
This thesis produces a definition of a minimal stack. We argue that it only needs
the two lower layers of the standard BLE stack to establish an keep a connection.
We provide a Rust implementation that demonstrates this for a fact and evaluate
the power consumption and other measurements. By choosing Rust we get the
opportunity to explore this promising young language in the context of embedded
programming, and in particular, using it for building a BLE stack.

A summary of our evaluation follows:

• The reliability of the BLE stack is similar to that of Mynewt.

• Measurements of the power consumption shows that our implementation in
Tock has an overall lower energy consumption during advertising, even if it
is higher during peaks. Over a connection interval, the power consumption is
slightly higher than that of Mynewt.

• In a connection, the time from when the device receives a packet to when
it replies is within the range of ± 1 µs from what is stated in the Bluetooth
specification.

1.5 Thesis Outline
This thesis is divided into eight chapters that are structured to successively give
the reader a deeper understanding of the project. Chapter 2 starts by describing
what hardware we use, the Rust programming language, Tock and Bluetooth Low
Energy. In Chapter 3, we present two competing operating systems for embedded
devices, both implemented in C, and we make a short comparison between them
and Tock. We define our interpretation of a minimal BLE stack and present our
design in Chapter 4, while Chapter 5 describes how it is implemented. This chapter
also covers a discussion of Rust’s suitability for a Bluetooth stack. After that, we
present what method we use for evaluation of the system and our results in Chapter
6. The thesis ends with a summary and conclusions of some key parts of the thesis
in Chapter 7.

3

1. Introduction

4

2
Background

This chapter introduces elements that are needed to get a clear picture of our project,
including the hardware that is used during this thesis and the advantages of using
this particular hardware. It introduces Rust and its features so that the reader can
understand how they are used in Tock when the operating system is presented in
the following section. Lastly, we describe the parts of BLE needed to follow along
when reading about the design in Chapter 4.

2.1 The Hardware Platform

This thesis uses a nRF52 development kit from Nordic Semiconductor as target
development hardware. The development kit supports a few different hardware
chips, but the one we are using is the nRF52832 System-on-a-Chip.

The nRF52832 is a chip with a modern 32-bit ARM Cortex-M4F processor [8].
Together with the CPU, the chip also contains 64 kB of RAM and a flash memory
of 512 kB and a 2.4 GHz Bluetooth Low Energy antenna.

It compares well to other chips with regards to energy efficiency [9]. Energy
efficiency is of great importance for embedded devices as they often require long
times of unattended operation.

Compared to the previous version of the development kit, nRF51, the nRF52
has considerably improved the start-up time, or “ramp-up time”, of the Bluetooth
antenna and the radio chip that is controlling it. The ramp-up time has gone from
140 µs down to 40 µs [2], which is a substantial improvement and it is especially useful
in Bluetooth when the replies sometimes need to be sent within short windows of
time, see Section 2.4.

To further help with these timing constraints, the nRF51 and nRF52 provide
the developer with a set of hardware shortcuts. These shortcuts can be used to bind
events and tasks together in the hardware by programming what decision should
be taken beforehand, at an instant during non-timing-critical periods, and thereby
avoiding a potentially slow decision to be made during periods when a reaction is
expected within microseconds. Both boards also have support for calculating the
checksum (CRC) of every packet sent or received at the hardware-level which also
eliminates a slow operation during critical periods.

In Table 2.1, the nRF52 is compared to other devices to give a better under-
standing of its computing power.

5

2. Background

Device CPU speed RAM
nRF51 32 MHz 32 kB
nRF52 32 MHz 64 kB
OnePlus 5 2.45 GHz 6 GB
MacBook Pro 2017 2.9 GHz 16 GB

Table 2.1: Comparison of nRF hardware with modern, everyday devices.

2.2 Rust

We will do the programming part of this thesis in the relatively young language,
Rust. The language is only three years old, version 1.0 was released 2015, but has
gained a following for its unique approach to memory management and type safety.

2.2.1 Embedded Rust

Rust in the context of embedded programming is still in its early stages, but this
modern language has many advantages to older ones traditionally used for embedded
programming, like C.

The Rust language and its compiler is more powerful, catches more errors at
compile-time, and thereby prevents run-time errors. This is especially convenient for
embedded programming since run-time errors are hard to debug without designated
debugging equipment.

Rust also promises zero-cost abstractions, that allows the programmer to add
type-safety checks and structure the code in a more straight-forward way with no
additional run-time cost. Most of these abstractions will be flattened into highly
optimised code with high performance at compile-time.

2.2.2 Ownership

Rust has a strong concept of ownership; there can only be one owner of a particular
variable at a time. Every time a variable is assigned to another, or when a function
gets called with a variable, the ownership of that value is handed over. Changing
ownership means that all previous references get invalidated.

In particular, the rules are that there can either be many immutable references,
i.e. with read access only, to a variable, or one mutable reference, i.e. with read
and write access. The borrow checker is the feature responsible for enforcing these
restrictions.

This feature prevents race conditions and is one of the more powerful features in
Rust since race conditions are generally hard to track down in other programming
languages.

6

2. Background

2.2.3 Enums and Associated Values
Another useful language feature of Rust are enums and associated values in enums.
An enum represents a discrete type, a type with only a finite set of values.

An example of this is the Option type in Rust. It is used to represent the
presence or absence of a value, by its variants Some(value) or None. Option ac-
complishes this by using associated values, i.e. the value that is present in the
Some(value) variant. A variable of type Option can only unwrap its associated
value if it has a value. With this construct, Rust circumvents references to null
values, or null pointers, a common problem for many other languages.

2.3 Tock
Tock is a new operating system that is designed to provide a safe multiprogramming
environment for software development on embedded devices [1]. In particular, the
problems Tock is trying to solve can be summarised as follows:

Dependability - Embedded system might need to run for a long time without
interference from a human user as they might be placed in locations where they
are not easily reached, or that their user interface is limited.

Concurrency - If I/O tasks are scheduled concurrently on an operating
system the microcontroller can spend more time in its sleeping state. Less
energy is needed this way [10].

Efficiency - Embedded devices have much lower memory capacity than a
personal computer. Therefore caution must be taken on how the memory is
shared between different parts of the system, such as between the kernel and
user-space applications.

Fault isolation - Failure in one part of a system should not cause other
parts to fail as well.

Loadable application - Users can install applications with no need to re-
program the entire kernel.

Through a combination of the type- and memory-safety features of Rust, modern
hardware safety features, and the system architecture of Tock, the operating system
manages to provide all five of these items.

2.3.1 System Architecture
The architecture of Tock separates the code of the operating system into capsules and
processes, depending on whether they are a part of the kernel or user applications,
respectively. The capsules lie in the kernel and are written in Rust to take advantage
of the memory- and type-safety features of the programming language. Each capsule
consists of a Rust module, which includes an instance of a struct, its associated
methods and static variables that all make up the module itself.

7

2. Background

Figure 2.1: The memory of a process in Tock. Figure is from the paper "Multipro-
gramming a 64 kB Computer Safely and Efficiently" [1].

Capsules A capsule can either be considered trusted or untrusted, depending on
what type of capsule it is and what its responsibilities are. Most of the capsules are
considered untrusted and are therefore not allowed to read from or write directly to
the memory of another capsule or process. This constraint is enforced by Rust’s in-
herent isolation of modules, which prevents external modules from accessing private
methods, as explained in Section 2.2. Only capsules that need direct access to the
hardware are considered trusted. These capsules make use of Rust’s keyword unsafe
to perform necessary operations that are usually prohibited by the memory-safety
model, such as allocating memory at specific addresses.

Processes For user programs to be able to be loaded dynamically at run-time,
an alternative separation than capsules is needed. In Tock, this separation is called
a process. The processes keep user programs physically separated in the hardware
rather than by language features like the capsules do. As a benefit, the programmer
can implement applications for Tock in any language of their choosing since the
processes do not rely on Rust’s module separation as a safety feature.

A process can communicate with the kernel via a system call interface, and other
processes via inter-process communication (IPC), in which a process can share a
memory region with other processes.

Each of the processes is assigned a region of memory which is separated from
the memory of the kernel and the other processes. As in other operating systems,
the process keeps its stack, heap and other process-related information in this mem-
ory region (see Figure 2.1). However, unlike other operating systems, the memory
contains an additional component known as a grant. The grant is used by a capsule
that needs to allocate memory during run-time to serve a request from a process.

Even though the grant resides in the address space of a process, the process
cannot access this memory region. If this would be possible, the process could
tamper with the capsule’s data, which would break the security model. The capsules,
on the other hand, can read and modify data inside the grant through a limited

8

2. Background

System call
command
allow
subscribe
memop
yield

Table 2.2: The five types of system calls supported by Tock

programming interface. By leveraging Rust’s type-system, Tock can ensure that
references created inside of a grant cannot be moved out of the grant.

2.3.2 Scheduling
Tock uses an event-driven kernel scheduler where the events originate from either
system calls, which are sent from the processes, or from interrupts, which are sent
asynchronously by the hardware. A capsule communicates with another capsule
by directly calling its public functions or by sharing memory. All capsules share
a common stack and are scheduled cooperatively by the kernel, which means that
every task runs until its completion. As a consequence of this, long-running capsules
will degrade the performance of other capsules.

The scheduling of processes differs from the scheduling of capsules. Since the
processes have separate stacks they can be scheduled preemptively, that is, run-
ning concurrently. Tock is using the simple but effective round-robin scheduling
algorithm. Preemptive scheduling allows a process to perform lengthy executions
without causing any adverse effects for other processes.

2.3.3 System Calls
There are five types of system calls in Tock which provides an interface for processes
to communicate with the kernel. The system calls are listed in Table 2.2.

The command system call is used by a process to request the kernel to perform
a particular task. It takes an integer as a parameter which decides what task the
kernel should perform.

The system call allow is used to ask the kernel to perform a task which needs
a more complex parameter than just an integer. In a sentence, it allows the kernel
access to a part of the process’s memory space.

If a process wants to be notified when a specific event occurs in one of the
capsules, it can use the subscribe system call. Upon calling subscribe the process
passes along a callback function as a parameter, which will be called when the event
in question occurs.

The yield system call is required to serve queued callbacks. If the callback
queue is empty when yield is called the calling process is blocked. As soon as
a callback is placed on the queue, control is returned to the registered callback
function. After the callback function returns, the process resumes execution at the

9

2. Background

place where the yield call was issued.
There is also a system call known as memop which handles memory boundaries

for processes.

2.4 Bluetooth Low Energy

Bluetooth Low Energy (BLE) supports wireless communication in the 2.4 GHz ISM
(Industrial, Scientific and Medical) band, which is divided into 40 channels [11].
Three of these channels (37, 38 and 39) are the primary advertising channels. They
are used by devices that have not established a connection with another device.
The primary advertising channels are spread over the band and are separated by
several other channels. The reason for this is to minimise interference from one
advertising channel to another. The remaining 37 channels are used by devices as
secondary advertising channels, and for communicating data after a connection has
been established, they are therefore called data channels. By applying frequency
hopping, BLE reduces the risk that congestion on one channel might cause packets
to get lost. Reducing the risk is necessary since BLE shares the band with other
protocols, for example, classic Bluetooth and Wifi.

The BLE stack is divided into three parts: application, controller and host. The
latter two are parts of the Bluetooth core system. Both the controller and the host
block is further divided into smaller blocks, or layers, with different responsibilities.
The controller communicates directly with the hardware and has more critical timing
constrains that it needs to fulfil, while the host does not have such constraints.
Optionally, the two layers can be separated by a layer known as host controller
interface (HCI) which passes information between the upper and lower parts of the
stack.

The controller contains two layers: the link layer and the physical layer. The
following two subsections focus on describing the role of the link layer; different roles
a device can assume; and how a connection is established.

2.4.1 The Link Layer
The link layer is responsible for keeping track of the current operation state of the
BLE host; it also keeps track of what actions are allowed in each state. Essentially,
the link layer state machine has the following five states: [12]:

Standby state - the device is idle, i.e. it is not sending, nor receiving, any
packets. This state can be reached from any of the other four states, and a
device in the standby state can move to all other states, except the connection
state.

Advertising state - the device is sending packets to advertise its existence.
It might also listen for and reply to requests from other devices. A device in
this state is called an advertiser.

Scanning state - the device is listening for packets sent by advertisers, and
might also reply to them. A device in this state is called a scanner.

10

2. Background

Standby

Scanning

InitiatingAdvertising

Connection

Figure 2.2: Bluetooth Low Energy Link Layer state machine and all the permitted
transitions.

Initiating state - the device wants to create a connection with another device,
and are therefore listening for packets sent by this/these device/devices. A
device in the initiating state is referred to as an initiator.

Connection state - the device has been connected to another device. This
state can be reached from both the advertising and the initiating state. Within
this state, a device can have one of two roles: if entered from the initiating
state the device will operate as a master, else it will operate as a slave. The
device which assumed the master role is responsible for selecting the different
parameters used in the connection, and to communicate them to the slave.

The link layer can have several state machines to keep track of multiple parallel
modes of operation, such as connections with multiple peers at the same time. Each
of the state machines can, in turn, only be in one of the states. At least one of
the state machines must support either the advertising state or the scanning state.
Figure 2.2 shows the different states of the link layer state machine, and how it can
move between them.

Packet Format

Depending on which state the link layer is in it will send either advertising channel
packets or data channel packets. Devices that have established a connection com-
municates via data channel packets, but up till that point they are using advertising
channel packets. Both of these packets have the same format and, as can be seen

11

2. Background

Preamble
(1 or 2 octets)

Access Address
(4 octets)

PDU
(2 to 257 octets)

CRC
(3 octets)

Figure 2.3: The link layer packet format.

in Figure 2.3 has four mandatory fields. The fields we will focus on are the access
address field and the PDU (Protocol Data Unit) field.

The access address field contains a four-byte long address. In the advertising
state, when advertising channel packets are used, all packets carry a predefined
advertising access. After two devices have established a connection, they change
their access address to identify what packets belong to their connection and use
that address in the access address field. It is the responsibility of the initiating
device to generate a random access address that is only used within that specific
connection, and communicate this address to the peer device before the connection
is established in a designated connection request packet.

What the PDU field of a link layer packet contains depends on if the packet
was transmitted on an advertising channel or a data channel. Both of the PDU
types carries a header and a payload, but what these fields contain differs. While
the advertising channel PDU holds information about the advertiser, the contents
of the data channel PDU can be both empty, to serve as an acknowledgement of
receiving another packet, or contain requests or replies to requests of data during
the connection.

Advertising State

As an advertiser, the device follows a sequence of sending advertising packets on all
or a subset of the three advertising channels before it becomes idle for a predefined
amount of time. If the device broadcasts advertisements of the scannable type, it
will listen for and respond to scan requests from other devices before changing to
the next channel. Each sequence of sending advertisements is called an advertising
event. The time from the start of one advertisement event to the beginning of its
following event is called advertising interval and is a period of between 20 ms and
about 10 000 s.

An advertiser does not necessarily have to advertise on all of the three primary
channels, but each advertising event has to be sent on the channels in ascending
order, i.e. if channel 37 and 38 are used the device shall advertise on channel 37
before channel 38. Furthermore, if the advertiser receives a connection request or a
scan request, the advertising event might end earlier.

An advertising packet can be of one of several types and indicates what kind
of requests the advertiser will respond to if any. The advertising events can be
one of the following types: scannable; connectable; connectable and scannable; and
non-scannable and non-connectable. The event type which is both connectable and
scannable can only be undirected, but the remaining three exists as both directed
and undirected events. If undirected events are used, anyone is allowed to reply to
the advertisements, while directed adds a restriction on who is allowed to send a

12

2. Background

Advertising event type Directed Undirected
Scannable x x
Connectable x x
Scannable & connectable - x
Non-scannable & non-connectable x x

Table 2.3: The different advertising event types, and whether they can be directed
and/or undirected.

request to the advertiser.
Most of the advertising types require the time spent on each channel to be

no longer than 10 ms. For some of the advertising types, it is also required that
the advertiser can start to receive packets 150 µs after the last advertisement was
sent. If the received packet was a request, the advertiser must also be able to
start transmitting a response within 150 µs from the time when the reception of the
request was finished.

Scanning State

Just like the advertiser, a scanning device jumps between the primary advertising
channels, but its timing requirements differ from that of the advertiser. Two pa-
rameters have to be specified to the scanner: a scan window which tells how long
the scanner will listen on a channel, and a scan interval which is the time from the
start of one scan window to the start of its succeeding scan window.

A scanner can either be passive and only listen for advertising packets, or be
active and respond to scannable advertising PDUs. The use-case decides which
of the modes should be used. If the scanner wants the extra information that the
advertiser offers it should send a scan request back. The response to the scan request
will be sent in a scan response PDU. Until the scanner receives a scan response from
the advertiser, it will assume the packet was lost and will continue to send scan
requests as replies to the subsequently received advertisements.

As an active scanner contributes to congestion on the channels, it is required
to use a backoff procedure to reduce the risk of collisions between packets. The
Bluetooth specification does not specify an exact algorithm for the procedure, but
the algorithm has to respect that the advertising channels are a shared medium.

Initiating State

An initiator acts very much like a scanner, but with the intention of connecting to
another device. To create a connection, an initiator sends a connection request as a
response to a connectable advertising PDU.

The connection request sent by the initiator contains parameters that will be
used by the two devices to keep the connection alive, such as information about
what channels they are going to communicate over and in what order. When the
advertiser receives a connection request, and the connection is created, the initiator
assumes the master role and the advertiser the slave role detailed in the next section.

13

2. Background

2.4.2 Establishing a Connection
A connection can either be considered created or established. Directly after two de-
vices have entered the connection state as described in Section 2.4.1, the connection
is said to be created. Not until a device receives a packet from its peer device is
the connection said to be established. As previously mentioned, the initiator of the
connection has the master role and is responsible for timing in the connection. The
other device is known as a slave.

The connection is driven by so-called connection events. In a connection, data
PDUs are sent instead of advertising PDUs. The devices jump between channels
from the channel map field specified in the connection request PDU sent by the
initiator. How this changing of channels is done are specified by a channel selection
algorithm [12]. Within a connection event, the master and the slave are taking turns
of who is sending and who is receiving. The exchange of packets within a connection
event takes place on the same channel. If any of the two devices want to send more
than one packet during a connection event, it indicates so by setting a bit called
MD (more data). Not until after the connection event is finished, the master and
the slave moves to the next channel.

Every connection event starts with the master transmitting a packet, and ends
when neither of the two devices wants to send anything more, but no later than
150 µs before the next connection interval [12]. The length of the connection interval
is specified in the connection request sent by the master and is used to synchronise
the master and the slave after they have changed channel between two connection
events. As the master initiates each connection event, the least that can happen
during a connection event is the transmission of that single packet. The slave is
required to transmit a packet whenever the master sends something, except if the
CRC match fails two times in a row within the same connection event. If that
happens, the event should be closed. The master is always allowed to send another
packet, no matter whether the CRC is correct or not, as long as the slave replies.

A data PDU header contains two bits which are used for acknowledgement of
data packets. One bit is used as the sequence number (SN) of the packet. The other
bit indicates what SN a device expects to get next from its peer, and is therefore
called next expected sequence number (NESN) [12]. As the NESN bit can represent
no more than a single packet, only one packet at the time can be acknowledged, and
therefore a device has to continue to resend a packet until the peer acknowledges it.

Several things affect the performance of a connection, and it might get lost
without any warning. To avoid being trapped in an already lost connection, both
the master and the slave keeps track of how long time has passed since they last
received a packet from their peer. If that number gets to large, the device will end
the connection and enter the standby state.

14

3
Related Work

Tock has many competitors in the field of operating systems aimed for embedded
devices [13, 14, 15]. For Tock to compete with these, it should have advantages in at
least some areas when it is compared to other operating systems. In this chapter, we
briefly present two other operating systems and compare their BLE implementation
with that of Tock.

3.1 Apache Mynewt
Apache Mynewt is an open source operating system for IoT devices which, along with
other protocols, supports communication via BLE [16]. The BLE implementation,
named NimBLE [17], supports the full BLE stack. The implementation even includes
an HCI layer, which allows the user to exchange the host or controller part of
NimBLE with hardware or software provided by another vendor [18].

Even though Mynewt as an operating system supports several different boards
[19], the BLE controller supports only Nordic Semiconductor’s nRF51 and nRF52
[20], as only drivers for these has been implemented. On the other hand, the host
implementation can run on any of the boards supported by Mynewt.

The link layer in NimBLE can adopt all of the five states specified in the Blue-
tooth Specification [18]. An advertiser can be either connectable or non-connectable,
and in the same way, a scanner can either have the intention of connecting to an
advertising device (act as initiator) or just listen for packets. Further, NimBLE
allows a device to act in several roles concurrently, and a connectable advertiser can
be in several connections at the same time.

The controller of a BLE stack contains, as mentioned in Section 2.4, a link layer
and a physical layer. In NimBLE, the code for the link layer is grouped into several
files, as what should be done depends on the current state of the link layer state
machine [21]. For example, functions that are unique for an advertiser is grouped
together in its own file. One example of how this is used can be seen in Listing
1. Here, a function that is common between the link layer states is called when
the radio has started to receive a packet. This function uses a switch statement
to determine in what state the link layer is in and then calls its counterpart in the
corresponding link layer.

Apache Mynewt also provides some example projects, which allow a user to
play and learn how to use NimBLE [17]. In the evaluation of our implementation in
Section 6, we compare against the example project called ’bleprph’, which is a basic
implementation of a BLE peripheral.

15

3. Related Work

void rx_start() {
switch (link_layer_state) {

case STATE_CONNECTION:
conn_rx_start();
break;

case STATE_ADVERTISING:
adv_rx_start();
break;

case STATE_INITIATING:
init_rx_start();
break;

case STATE_SCANNING:
scan_rx_start();
break;

//Code has been removed
}

Listing 1: When the radio has started to receive a packet, the link layer in NimBLE
switches on the link layer state to see where the packet should be forwarded. This
code is a simplified version of the real NimBLE code [22].

Discussion

NimBLE is a complete implementation of the full BLE stack, which means that all of
the host layer and the controller layer is supported. In contrast, our implementation
of BLE in Tock provides only a controller layer, as Section 4 discusses. As a result,
NimBLE has a wider range of use cases. For example; a layer called L2CAP is
responsible for the fragmentation of packets, meaning that NimBLE can send larges
packets than our implementation supports.

One similarity between the two BLE implementations is that both of them opted
to write their own BLE stack for nRF52 to fit the operating system, rather than
using the driver provided by Nordic Semiconductor.

The NimBLE controller supports both nRF51 and nRF52, while we choose to
only focus on the nRF52 board. This choice comes partly from an advise we got
from one of the researches at Stanford, who told us that they are going to phase out
the older version of the board.

Another difference between NimBLE and our BLE stack is of course that while
NimBLE is implemented in standard C, we are using Rust as the programming
language.

NimBLE has yet another advantage over our BLE implementation: it supports
concurrent connections. Even though we are not actively working to include support
for this, we still strive to structure the code in such a way that it could be relatively
easy included in future versions of the BLE stack.

16

3. Related Work

3.2 Contiki
Contiki is an open source operating system for embedded devices which was de-
veloped to meet the hard constraints of sensor networks [23]. Sensor nodes need to
exchange and forward data within the network, which Contiki enables by supporting
communication protocol such as IPv4, IPv6 and 6LoWPAN. The operating system
allows for downloading and removing applications at run-time, both manually and
over the air [23], and due to the low power requirements, it can run wireless relay
nodes on batteries [13].

Like Tock, Contiki supports several hardware devices, among them the nRF52
[24].

Contiki does not have its own full BLE implementation for nRF52; instead,
the operating system relies on the SDK and a “softdevice” provided by Nordic
Semiconductor.

Michael Spörk [25] presents the work of creating a stack which supports IPv6
over BLE. This would enable devices with tight energy restrictions to communicate
over the internet via just a BLE interface. The idea takes advantage of the fact
that IPv6, and IP in general, is not dependent on the upper or lower layers of the
protocol stack [26]. By substituting the IPv6 link layer with the BLE link layer,
also two devices using different link layer protocol can communicate using IPv6.

The idea of having IPv6 running on top of BLE is not new, it is based on an
RFC [27, RFC7668], and there exist other implementations of it already. Spörk
suggests that the importance of his work lies, partly, in that it is open source, in
contrast to other existing implementations. Allowing anyone to read and use the
code is valuable for further research, as one does not have to start from scratch if
one wishes to continue the work within the area.

In his thesis, Spörk presents a general design for the stack which fits the archi-
tecture of Contiki, but that can be used together with any hardware running the
operating system. The design by Spörk introduces an additional layer BLE-HAL,
that is not directly a part of the network stack of Contiki. This layer is responsible
for communicating with the BLE controller provided by the hardware, or if it is not
fully implemented, the BLE-HAL adds the needed functionality. This means that
the layer is hardware dependent and that what exactly is included in the BLE-HAL
depends on the hardware used and must be adjusted when porting to new hard-
ware. To the rest of the network stack, the layer provides functions similar to the
HCI layer in a BLE stack.

Discussion
Our BLE implementation in Tock and the one in Contiki differs in the way that they
approached supporting different parts of the BLE stack. We have aimed at imple-
menting the BLE controller, i.e., the lower layers, while Contiki relies on this part to
be handled by the softdevice provided by Nordic Semiconductor. Therefore a direct
comparison between the two is challenging to make, as their BLE implementation
for nRF52 is not open source.

In relation to our work, the interesting part of Spörk’s implementation is the

17

3. Related Work

BLE-HAL layer. Even though this layer might not add a massive amount of func-
tionality for the nRF52, as the board can be loaded with a BLE controller, it is
interesting in other aspects. His work shows us how a fully implemented BLE con-
troller can be used, both by other BLE host implementations as well as for other
purposes than was originally thought of.

Spörk also mentions in his master’s thesis that one reason why the functions of
the BLE-HAL mimics those of a BLE HCI is that it will make the integration of
the BLE-HAL easier the if the BLE controller of the hardware comes with an HCI
layer. This layer is not mandatory in a BLE stack, and our implementation does
not provide such a layer, but with this reasoning in mind, we can see the benefits of
adding such a layer in the future.

18

4
Design

This chapter presents a high-level overview of our design, suited for the system
architecture of Tock. It is further described as a possible implementation in the
next chapter, Chapter 5. First, we describe our minimal stack, which goes into
detail about what our minimal stack contains, what parts we chose to include or
exclude and why we chose to do so. The system architecture section follows with
an overview of how the different modules in our BLE stack relate to each other and
how they communicate with each other. This chapter presents an answer to the first
goal of this thesis, as Section 1.1 specifies, namely the goal to provide "A definition
of a minimal BLE stack". How we choose to realise this definition into an actual
system design is also presented in this chapter.

4.1 Basic Flow
In this master’s thesis, we focus on enabling data exchange between two devices
using Bluetooth Low Energy. The minimal stack is derived from what is needed to
create, establish and keep a connection alive. For this task, a device has to perform
the following steps:

1. Advertise its existence

2. Receive a connection request from another device

3. Receive and reply to data packets from that device

The first step is required as a device must receive an advertisement for a device
before it is allowed to send a connection request to it. The second is what is required
to create a connection, and the third is what is needed to establish and keep the
connection.

4.2 Definition of a Minimal Stack
The Bluetooth specification states that the following is required from a minimal
BLE stack:

"A minimal implementation of a Bluetooth LE only core system covers
the four lowest layers and associated protocols defined by the Bluetooth

19

4. Design

specification as well as two common service layer protocols; the Security
Manager (SM) and Attribute Protocol (ATT) and the overall profile
requirements are specified in the Generic Attribute Profile (GATT) and
Generic Access Profile (GAP)." [28, p. 179]

To fulfil the basic flow in Section 4.1, we require no more than the two lower
layers, i.e. the link layer and the physical layer. The physical layer is needed
to send and receive data by communicating with the hardware. The link layer
ensures that the device behaves according to the Bluetooth specification, as there
are no guarantees that communication with other devices is possible otherwise. This
includes making sure that the device holds the timing constraints, switches between
transmitting and listening for packets at a proper time, to correctly interpret data
received and also to have knowledge of what should be done depending on what
packet was received.

The rest of the protocols mentioned in the minimal implementation from the
specification are services that operate on top of an existing connection. The Secu-
rity Manager is a service for secure pairing and encrypted connections [29]; both
are superfluous for the most basic device communication. Attribute Protocol and
Generic Attribute Profile are service discovery protocols used to identify what ser-
vices a device provides [29]. Service discovery is less critical if it is known beforehand
with what device the connection will be established.

From this argumentation it is clear that the scope of this master’s thesis does
not cover everything in the minimal stack outlined in the Bluetooth specification.
Instead, our definition is the following:

"The minimal Bluetooth Low Energy stack is defined as an implementa-
tion in which only a Link Layer and a Physical Layer are present."

Discussion

The definition differs quite a bit from the Bluetooth specification, as Section 4.2
describes. Fundamentally, the difference is that the purpose of the BLE stack in
the two definitions is not the same. The Bluetooth specification presents what has
to be included in the stack to enable meaningful communication over BLE. Our
definition, on the other hand, describes a BLE stack which will only be able to
create and establish a link layer connection.

In real-world use cases, the described BLE stack is not enough to satisfy the
requirements for communication with other devices. A specific example of this is that
most real-world data transfers would need some encryption, which is implemented
by the security manager. We exclude parts like ATT, GATT and GAP as we see
them as higher-level protocols that are more suitably implemented as a user-space
library, and is therefore outside the scope of this thesis.

From this, we conclude that our definition of a BLE stack indeed is a minimal
one for its use case.

20

4. Design

Figure 4.1: Comparison of Tock BLE stack before (left) and after (right) our design
was implemented.

4.3 Overview of System Architecture

Tock already had some support for BLE at the start of this thesis, even though
it was very limited. A device could either act as an advertiser that sends an ad-
vertisement on each of the advertising channels or as a passive scanner that listens
for advertisements, i.e., without responding to any of them. The implementation
consisted of three main components: BLE user library, BLE capsule and BLE hard-
ware module [7]. Together these three parts constitute the BLE device driver in
Tock. The user library hides the actual Bluetooth implementation from the user
application, and provide an easy way to start and stop advertising or scanning. The
hardware module is designed towards a particular piece of hardware and is respon-
sible for tasks like instructing the radio when it should transmit or receive, and to
set hardware timers, among others. The BLE capsule contains the logic that ties
the other two parts together and makes sure that the device acts according to the
Bluetooth specification.

With the new set of features that comes with a Bluetooth stack that supports
connections, the previous design was no longer flexible enough. As a result, we have
to refactor and extend the previous design to make it more flexible and to meet the
tight timing requirements of BLE.

Expanding upon the stack-like design, we decide to add a layer to closely match
the Bluetooth stack, and also further divide different parts of the BLE device driver’s
responsibilities into different modules. By keeping all changes inside the BLE kernel
code, the external interface is not affected. This means that the BLE capsule’s
system call interface towards the user application stays unchanged.

4.4 Layer Responsibilities and Communication

The BLE capsule acted previously as a sort of coordinator; it was the entering point
for a user application, and it communicated with the hardware module. In the
new design, these responsibilities remain, with an addition: the BLE capsule is also
responsible for the communication with a new layer called link layer, as Figure 4.1

21

4. Design

shows.
Even though the work of this thesis has come to increase the amount of logic in

the hardware module, most of the functionality related to the exchange of packets is
hardware independent, and so we have chosen to put this general logic in the BLE
capsule and the link layer. It is the link layer’s responsibility to make decisions on
the protocol level, to instruct the radio to transmit or receive or when it should
change the channel.

4.4.1 Link Layer
The idea of introducing a link layer is to encapsulate new, link layer specific, func-
tionality within it. Further, some decisions that currently is a part of the BLE
capsule are moved into this layer as well. This way, the BLE capsule have less
knowledge of how data should be interpreted and moves towards having an even
more coordinator-like role.

The link layer knows how the system should act as a response to all the different
events from the hardware, as it knows the link layer state machine, and what is an
acceptable response depending on the current state. As the hardware module only
communicates with the BLE capsule, the BLE capsule has to forward any request
or decisions aimed at the link layer. These requests are often about whether or
not a packet received by the radio shall be read, or how and when the radio shall
transition between sending and listening. The latter is an example of a task that
was previously enclosed by the BLE capsule. Further, the link layer knows how to
translate data in a connection request into meaningful information.

4.4.2 Hardware Module
The hardware module is what typically is referred to as the physical layer in Blue-
tooth. Just as before, this is the only part of the BLE device driver that has to
be implemented differently depending on what hardware is used. The hardware
module is the layer that is responsible for reading and writing data to the hardware
registers. This layer avoids making decisions unrelated to the hardware, rather it
forwards them to the BLE capsule and awaits further instructions. This communi-
cation is further described in Section 4.5.

4.4.3 BLE capsule
The BLE capsule is as mentioned above a coordinator which forwards data between
the link layer and the hardware module, as well as it is the entering point for user
programs. Apart from this, the BLE capsule also holds other logic, such as handling
when an application wakes up after it has been idle, prepares packets and forwards
these to the radio when they should be sent.

It also keeps an internal representation of user programs, and it is also used for
storing the state related to individual user applications, as Tock requires them to be
able to be scheduled preemptively. Some examples of this state are the advertising
data, current radio channel and current link layer state.

22

4. Design

The information in the representation of a user program is sometimes required
for specific decisions, and as it could be somewhat unpractical to always forward
this information to the link layer, there are occasions when the BLE capsule makes
decisions in matters that could be seen as more link layer related.

Further, this part of the BLE stack also handles callbacks to the user program
when a subscribed event occurs.

4.4.4 Discussion
To realise our definition of a minimal stack; it must be designed in a way which
matches how capsules are usually implemented in Tock. Therefore only minor
changes are done to the design of the already existing stack.

When implementing the hardware module, the task is to enable the hardware
and software to communicate with each other through a hardware-independent in-
terface. The feature set and hardware specific details can be very different between
hardware manufacturers, and even between different models of hardware from the
same manufacturer. As an effect, all hardware specific code fits best in its own layer
close to the actual hardware.

In Figure 4.1 we see that the link layer and the BLE capsule is placed at the same
level of abstraction. The reason for this is that the BLE capsule is responsible for
making decisions for the hardware module, while also facilitating the communication
between the hardware module and the user application. Instead of putting more of
the Bluetooth specific knowledge into the BLE capsule, which would break the single
responsibility principle, we opted to extract the Bluetooth specific decision-making
to another module at the same level of abstraction.

Our design comes with one disadvantage: the decision-making logic in the link
layer requires information stored in the internal representation of an app. Due to
this, the app-specific information has to be passed down by the BLE capsule to the
link layer every time a decision has to be made. An alternative solution would be to
duplicate the data, i.e., store the information in both the representation of the app
and the link layer. We dismiss this solution as it introduces a risk of inconsistency
between the values, no single source of truth.

4.5 Hardware Module Events

In our design, we want to keep the Bluetooth-specific knowledge separated from
the hardware controlling logic, which is why we have different layers in the stack
presented above. Two problems that arise when doing it this way are how to forward
the required parameters to other layers and how to get the result back.

Before the start of our thesis there was already a bit of functionality like this,
a TransmitClient and a ReceiveClient. A different module could register as one
or both of these clients to receive events when an advertisement was transmitted or
received. It is a common pattern in Tock to use a capsule that registers as a listener
to and commands the hardware component.

In our design, we extend this idea with more events (see Figure 4.2) to allow the

23

4. Design

Idle

tx_end

rx_start

rx_end

advertisement_done

Idle

TX RX

Figure 4.2: A flow chart showing the order of different events emitted by the
hardware module.

BLE capsule and link layer to control the hardware module more effectively. These
events differ from those generated by the hardware. To emphasise this difference
in this text our events are written using lower case, while those generated by the
hardware are written in upper case. On each of these events, a method call is
issued to the TransmitClient or ReceiveClient, which passes along information
about the event. At the end of the method, the next action to be taken is returned
depending on the input parameters. This means that the whole BLE device driver
is driven forward using hardware interrupts.

4.5.1 tx_end

This event fires just after the radio has transmitted a packet. The BLE capsule can
now decide if it should listen for responses and for how long.

4.5.2 rx_start

When the radio has received the header of a packet, it needs to decide if it should
bother with reading the rest of the packet or not. The radio will therefore trigger
this event and pass along the packet header to the BLE capsule for it to validate
the packet and decide if it should be read.

24

4. Design

4.5.3 rx_end
If a packet is decided to be read, this is the next event to be fired. Now the radio
has read the whole packet into a buffer and passes it upwards in the stack for it to
be processed further.

4.5.4 advertisement_done
A timeout in RX, skipping a packet or finishing processing a packet - these all
lead here, where the radio needs to know what to do after the TX/RX is complete
on a single channel. Often a TX is scheduled on the following channel, or, if the
advertisement interval is complete, the radio is put to sleep, and the advertisement
interval timer is started and set to continue advertising again after some long period.

4.5.5 Discussion
The BLE device driver is designed as a state machine driven by hardware interrupts.
This creates a rather simple way of making sure that the device behaves as expected
as only one interrupt is triggered at the time and also that the behaviour of the
device follows a is more or less predefined path.

When the device is sending no interrupt is needed after the TX has started, as
the device already has prepared the packet to be sent. For RX, having an interrupt
after the header of the packet is received could save some valuable time, as packets
that are not of interest are quickly discarded. This behaviour allows the device to
move to the next state of the state machine quickly.

The radio has to be disabled every time we want to switch between TX and RX.
Therefore, the two paths are merged at the end of the state machine, to then have
the radio become idle.

25

4. Design

26

5
Implementation

This chapter starts by briefly presenting an overview of the implementation, and
continues with what is new in the hardware module and how this differs from the old
implementation. Next, the chapter presents the implementation of the link layer,
which is followed by describing the communication between the different layers.
Further, the chapter specifies a timeout mechanism used to avoid that a device is
waiting in vain. It also presents the connection driver, a module that is part of
the BLE capsule and responsible for handle different aspects of a connection. The
chapter continues with explaining how transmission and reception of a packet are
done, focusing on the different hardware interrupts that the hardware module has
to handle during these periods. Lastly, the chapter discusses useful parts of Rust
that we are using in the implementation.

5.1 Overview

The system described in the previous chapter is realised with Rust modules, at least
one for each of the layers in Figure 4.1, except for the user application. Additionally,
in some cases where some values and functionality are tightly coupled, they can be
grouped into their own module. These modules are then used to hold information
that is related to each other, to make calculations on specific types of values, or to
extract some piece of information from a larger buffer. This allows for other parts of
the system to focus on the control flow of the system instead of knowing how data
shall be read. By making this kind of separation, we also split the implementation
into smaller modules that are easier to manage.

One example of when this is done is for connection-related data; it is link layer
specific, but we see a clear separation of the connection specific logic and the rest.
We feel that this motivates moving it to its own module, which is further described
in Section 5.6. Another example is the PDU parser which, as the name suggests,
encapsulates the knowledge about PDUs from the rest of the modules. Some exam-
ples are: translating the buffer sent over the air into a PDU struct, how to validate
a PDU, and translation from protocol-specific details; like numbers and type ids,
into our representation of a PDU type.

The communication between modules is done in different ways depending on
what responsibilities the module has. Some modules communicate through an in-
terface to decouple the layers from each other, some modules provide static functions,
and some provide instance methods. The latter case requires that the calling code
has access to an instance of the struct.

27

5. Implementation

Figure 5.1: The different events generated when the radio transmits a packet.
When a packet is received, the same events are generated but with RX instead of
TX. Figure is from "nRF52832 Objective Product Specification" [2].

5.2 Hardware Module

The hardware module contains a function called handle_interrupt, which is the
entry point of the BLE device driver after a hardware interrupt has occurred. In
the implementation from last year by Nilsson and Adolfsson [7], this function called
the BLE capsule if the radio was done either transmitting (TX) or receiving (RX)
a packet. The implementation did not take into consideration what had caused the
interrupt, only if it was related to transmission or reception of a packet. Further,
the implementation also assumed that a device was either an advertiser which were
neither scannable or connectable or that it was a passive scanner. This meant that a
device was only sending or listening, not both, and the radio did not have to bother
with timing issues or switching between the two states.

After an interrupt, the hardware module handed over the to the BLE capsule.
From here, the BLE capsule could do one out of two things: either it could schedule
another TX/RX on the next channel with a delay of 10 ms; or if it was on channel
39, it scheduled the radio to sleep for 300 ms.

Inspired by Apache Mynewt (see Section 3.1), we choose to look more into dif-
ferent kinds of events that can cause the radio to interrupt, to see how the hardware
can be better utilised.

During the transmission and reception of a packet, the radio generates four
events: READY, ADDRESS, PAYLOAD and END, as shown in Figure 5.1. The
developer can choose to configure the hardware to generate an interrupt or not, for
each of these events independently. In addition, since we cannot switch the radio
from RX to TX mode directly when the antenna is active, we use the DISABLED
event to perform the transition between the modes. This event is generated when
the radio is no longer used and is a marker that the radio once again can be set up

28

5. Implementation

1 pub fn handle_interrupt(&self) {
2 if regs.event_address.get() == 1 {
3 self.handle_address_event();
4 }
5 if regs.event_disabled.get() == 1 {
6 if self.state.get() == RadioState::RX {
7 self.advertisement_client.timer_expired();
8 } else {
9 self.handle_tx_end_event()

10 }
11 }
12 if regs.event_end.get() == 1 {
13 self.handle_rx_end_event();
14 }
15 }

Listing 2: Part of the hardware module, simplified. This is the interrupt handler,
which calls other parts of the hardware module that knows how to handle the events.

for either TX or RX.
The hardware shortcuts, mentioned in Section 2.1, provide the developer with a

way to chain these events. For example to utilise this information to make decisions
whether the radio should read a packet or not.

5.2.1 Redesigning the Hardware Module

In the redesign, there are four different cases where the program enters the interrupt
handler, with different behaviour for each of them. The first reason for the program
to enter the function is due to a timeout, which is further described in Section 5.5.
Next, two of the reasons are, as before, after the radio is done transmitting or has
fully received a packet. The function which handles this interrupts is shown in
Listing 2.

In addition to these three, if the radio is receiving a packet, it causes an interrupt
as a response to an ADDRESS event, i.e. after it has finished reading the address
field of the packet. This type of interrupt causes the hardware module to wait until
the radio has read another byte, which is the header of the packet. The header
contains the advertising type, and with this, the link layer has enough information
to decide whether the hardware module shall continue to read the packet or not.
The decision is based on whether or not the type of packet is valid in the current
link layer state. If the packet proves to be of interest, the link layer instructs the
hardware module to interrupt again when the packet has been read to the end;
otherwise it ignores the remaining part.

Along with the change described above, the scheduling of packets has been
moved into the hardware module. Originally, this used a timer in the BLE capsule
but to optimising the response time of the board we want to delegate as many tasks

29

5. Implementation

1 pub struct LinkLayer;
2

3 impl LinkLayer {
4 pub fn handle_rx_start() -> ReadAction {
5 match app.process_status {
6 Some(AppBLEState::Advertising) => match pdu_type {
7 Some(ScanRequest) => ReadAction::ReadFrame,
8 Some(ConnectRequest) => ReadAction::ReadFrame,
9 _ => ReadAction::SkipFrame,

10 },
11 Some(AppBLEState::Connection) => ReadAction::ReadFrame,
12 _ => ReadAction::SkipFrame,
13 }
14 }
15 pub fn handle_rx_end() {} // Handling end of RX event
16 pub fn handle_tx_end() {} // Handling end of TX event
17 pub fn handle_timer_expire() {} // Handling on timeout
18 }

Listing 3: Part of the link layer module, simplified. Line one shows the unit-like
struct. After that are the functions implemented on the link layer struct listed. The
first function gives an example of how the link layer uses the Rust match statement
to figure out whether the radio should continue reading a packet or ignore the rest
of it.

as possible to the hardware.
The only timer that is not a responsibility of the hardware module is the interval

timer between advertising events, i.e. after advertising on channel 39, that part is
left to the BLE capsule to allow preemption of other running apps.

5.3 Introducing a Link Layer
One reason why we choose to introduce a link layer is to isolate the BLE protocol-
specific logic from the rest of the BLE device driver. This is especially important as
the code grows and would become unfeasible to work with otherwise.

The link layer’s responsibilities are not exhaustive but still stretches over a
wide range of functionality. It is the only part of the system that has a concept
of how a BLE link layer should work, how a device should respond to different
events and how the information sent in a connection request should be interpreted.
To accomplish this, the link layer provides a function to be called after one of
the following events has occurred in the hardware module: ADDRESS, RX_END,
TX_END and timeout. The first three events are presented in Section 5.2, while
the details around the third are explained in Section 5.5. A shortened and simplified
version of the link layer module is presented in Listing 3. All four functions utilise
Rust’s match statement as an easy way of deciding what to do depending on some

30

5. Implementation

Radio Hardware module BLE capsule Link Layer

ADDRESS
rx_start

validate
return

return

Figure 5.2: An ADDRESS event causes the radio to generate an interrupt. This in
turn triggers the process of validating the received packet.

parameter.
Different packet types are of interest depending on the state of the device and

therefore marked as valid in this particular state. It is the link layer’s responsibility
to make sure that the device handles only the valid packets. Therefore, after an
ADDRESS event has caused an interrupt while the radio is in RX, a function called
handle_rx_start is called (Line 4). At line 5, the function checks whether the
device acts as an advertiser or is in a connection. In the first case, the link layer will
only accept scan requests and connection requests (Line 7 and 8). After a connection
is established, the slave is interested in every packet from the master, and therefore
all packets are accepted. In the default case (Line 12), marked with an underscore,
we ignore all packets.

When an END event is generated, the link layer is consulted of what should be
done next. Two functions are provided for this (Line 14 and 15), as the systems
should act in different ways when the radio is in RX and TX. They are called by
the radio to decide what to do after a packet has been received or transmitted,
respectively. Typically, the reception of a packet means that we need to respond in
some way, while the transmission of a packet often requires switching to the next
channel and scheduling the subsequent transmission.

After a timeout triggers an interrupt a particular function is called in the link
layer (Line 16). From this function, the link layer instructs the hardware layer to
reschedule after some time, where the time differs depending on whether the device
acts as an advertiser or is in a connection.

As the link layer does not need to keep track of information such as the state of
the device, it is implemented as an unit-like struct, i.e. a struct with no fields. Also,
all of its functions are public to enable them to be called from the outside, which is
the intended purpose of this module.

5.4 Transmit/Receive Flow
This section explains what happens during the transmission and reception of a
packet. In particular, what shortcuts and interrupts the radio uses to perform a TX

31

5. Implementation

and RX is explained.

5.4.1 Transmit Advertisement
Every time the advertising interval timer fires, a new advertising interval is started.
During an advertising interval, the radio transmits and listens on each of the three
primary advertising channels, 37, 38, and 39 in sequence.

Transceiving on one channel starts with that the BLE driver instructs the radio
to schedule a TX. The radio reads the information passed down from the BLE driver
and sets a shortcut between the timer and a shortcut called TX_END. This shortcut
will start the radio in TX mode, ready to transmit. At this point, we also set
two another shortcuts, READY_START and END_DISABLE. The first one will cause the
radio to start transmitting the packet as soon as it is able to, i.e., when the radio
has entered TX mode. The second will disable the radio as soon as the packet is
transmitted. We also enable the DISABLED interrupt. What this all means is that
the flow of a transmission goes from a DISABLED state, which is the idle state of the
radio, through READY, which will start TX by the hardware shortcut and finally we
will regain control again when we return to the DISABLED state, which now indicates
that the TX is completed. We define this as the tx_end event, where the radio calls
the BLE capsule to get further instructions. The BLE capsule will, in turn, call the
link layer to ask for the appropriate action as defined by the BLE standard.

5.4.2 Receive Advertisement
The radio needs two parameters to start RX mode: delay and timeout. The delay
defines when the radio should start to RX. The timeout will be relative to the delay
point and is used as the maximum time the radio will listen for responses before
moving on.

When the radio schedules a RX, just like for TX, we set READY_START and
END_DISABLE, but for RX we also set ADDRESS_BCSTART. This shortcut will cause
the bit counter module to start counting bits received by the radio, beginning from
the ADDRESS event. This time, we also start the timeout and set it to force the radio
into the DISABLED event. We can from here end up in two possible scenarios, the
first case it that the timeout fires the DISABLED interrupt, causing the radio to stop
listening for packets. The second case is that the radio starts receiving a packet
and the ADDRESS interrupt fires. In the second case, we stop listening for DISABLED
interrupts, as we do not want it to fire during the reception of a packet, causing the
radio to ignore that packet.

If we get an ADDRESS event, we have to decide if the packet is valid in the current
state. This is not something the radio can decide, so the decision is deferred to the
link layer via the BLE capsule. However, the radio first needs to wait until it has
read eight more bytes, the size of the packet header. This is where the bit counter
module comes into play. Since the timing between the ADDRESS event and reading
the full packet header is small enough, we busy-wait until the header is fully read
into the memory buffer. This is where we emit our rx_start event. The packet
header is also parsed to find out the type of the packet, which will decide if it is

32

5. Implementation

valid in this state. If the packet is valid, the radio enables the END interrupt, wherein
the full packet is finally read and passed up to the capsule for further processing
in the rx_end event. Invalid packets will immediately disable the radio and trigger
our advertisement_done event.

In the advertisement_done event, the BLE capsule decides what to do if no re-
sponse was received to the last advertisement, often this results in the radio switching
channel and a new TX to be scheduled. Although, it acts quite differently during
a connection. In this case, as the slave role, the only thing to do is to RX at a
specified time instant to read a packet from the master device. If a timeout is fired
in this state, the next RX will not occur until the next connection interval. After it
is scheduled, the radio is put into idle mode to save a bit of power.

5.5 Scheduling and Timeouts

The previous implementation had only one timer, which was used for scheduling
communication events (as described in Section 5.2). In our implementation this
timer is only used for a single purpose: to schedule the idle time, i.e. how long an
advertiser should sleep after an advertising event.

Within an advertising event and after a connection is established, the scheduling
is done by the hardware. The hardware module writes to a register R1 the time
at which the communication event should start. This register is then continuously
compared with the current time by the hardware. As soon as R1 matches the current
time value, an interrupt is triggered.

A new feature in the implementation is the use of timeouts. Without this func-
tionality, a device would listen forever if no packets are received. This is of great
importance in a connection. If a slave fails to receive a packet from master it should
handle this by retrying on the next channel. Without the timeout, the slave will
stay on the same channel, which would cause the connection to terminate.

Scheduling is always done relative to a packet: either from the start or the end
of a received packet or even the previously received packet. Between connection
intervals, it is more convenient to set an absolute clock value to keep the hardware
module unaware of the specific Bluetooth logic used to calculate this value.

We modelled these cases with an enum named DelayStartPoint (see Listing 4),
which has variants that describe each of these different cases. Most of the variants
hold an associated value that defines the delay value for when the next communica-
tion event should be scheduled. One exception is the PacketEndBLEStandardDelay
variant, which does not hold a value. It represents a value of 150 µs, which is fre-
quently used and we decided to make it a separate value. This is further detailed in
Section 2.4.1 and Section 2.4.2.

An instance of DelayStartPoint is delivered to the radio when the next com-
munication event should be scheduled. By using a match statement, the radio can
find what variant of the enum it received and can calculate from what point in time
it should schedule the start of the next event.

33

5. Implementation

1 pub enum DelayStartPoint {
2 PacketEndBLEStandardDelay,
3 PacketStartUsecDelay(u32),
4 PacketEndUsecDelay(u32),
5 AbsoluteTimestamp(u32),
6 PreviousPacketStartUsecDelay(u32),
7 }

Listing 4: Definition of the DelayStartPoint enum, which is used for scheduling.

5.6 Connection Driver

After a connection is created, the system defers to the connection driver to keep track
of connection-related information. The module contains two structs: DataHeader
and ConnectionData.

DataHeader represents the header of a data PDU in the connection, which means
that it has the same fields as the data PDU. In particular, it has one field for the
packet’s sequence number and another field for the next expected sequence number,
as Section 2.4.2 explains.

ConnectionData holds the state of the active connection and provides all func-
tionality for keeping a connection alive. For example, it holds an implementation of
the channel selection algorithm mentioned in Section 2.4.2. This algorithm is used
to calculate the next channel after each connection event.

Another example is a function for updating the channel map after a channel
map change event from the master. There is also a helper method for calculating
whether or not the connection interval has ended. The slave should switch to the
next channel if the master has nothing more to send on that channel, in this case,
the interval has ended. As soon as this happens, the device can stop listening for
packets and disable the radio after scheduling the next connection event, where it
should start listening again.

5.7 Developing with Rust

During the development of the BLE device driver, we take inspiration from the
Apache Mynewt project and the Contiki project. These are both implementations
of BLE in C, which means that there is still much room for us to utilise the features
and expressiveness of the Rust language to improve upon these previous solutions.
In this section, we highlight some parts of the Rust programming language which
has a significant influence on our choice of implementation and discuss how these
are used.

34

5. Implementation

// (1) C
int handle_rx_end(int pdu_type)

// (2) Rust
fn handle_rx_end(&self, pdu: BLEPduType) -> Option<ResponseAction>

Listing 5: Comparison between the signature of a handle_rx_end function in C
and Rust

5.7.1 Expressiveness

In C, the only types available to the programmer are different variations of integers
or floating point numbers: int, char, float, double, short and long. The size
of these types in bytes varies depending on the target architecture. The language
has structs which are used to group values together but no way of defining custom
algebraic data types, also known in some languages as enums. Without this feature,
the expressiveness of the language is limited. An example of where this is very
apparent is return values, which always requires the programmer to keep track of
the implicit agreements between callee and caller, that is the function T being called
and the function calling T.

From just reading function signature 1 in Listing 5 there are not many clues
provided to the programmer of what values they might receive as the return value
when calling this function, outside of it being an int. The compiler will not even
prevent them from calling the function with an invalid value, simply because the type
system in C is not expressive enough for the programmer to set proper constraints
on the values passed to the function.

On the other side of the spectrum, Rust provides the programmer with types
like Option, which signals that the value returned might be empty, and enums with
associated values that lessens the cognitive load instead of requiring more.

5.7.2 Encapsulation

A feature of Rust that is very common in programming languages nowadays is
encapsulation. Firstly, a struct can contain public and private fields. Public fields
are accessible from the outside of the struct, and private are not. Member functions
can either mutate the struct or get data derived from the struct, and Rust groups
these together by the struct. All fields and methods are also private by default,
which isolates data and behaviour from modules that do not and therefore should
not know about them. Above this, every file in Rust is a separate module that
encapsulates its fields, structs and functions.

In contrast to this, the encapsulation of C is less fine-grained. C has header
files; wherein the programmer declares what will be exported from the file. But no
member functions, which means that every function is in global scope as soon as it
is included.

35

5. Implementation

5.7.3 Mutability
Rust also has implicit immutability, which in simple terms means that we are not
able to change the value of a variable by default. With the keyword mut, the variable
is changed to be mutable and can be reassigned as many times as needed.

This concept also extends to references. To change a variable the current func-
tion needs to have a mutable reference to that variable. This means that there is
a clear distinction between functions that are safe, in regards to mutability, to call
and functions that are not. The programmer can easily know by just looking at the
function signature if the function will be able to mutate its parameters or not.

5.7.4 Discussion
With these highlighted features, our design has a modern approach to the structure
of modules and structs. For example, only making fields public when they need to
and keep them private by default.

Exclusively at times when a variable needs to be mutable, we declare it to be
mutable. This helps with reading and understanding the code since the programmer
can be sure that the first assignment will be the only one. An example of this is if a
private field of a struct is changed unexpectedly. The only way to change a private
field of a struct is in a member function with a mut reference. Therefore the number
of functions the programmer needs to check for erroneous code is significantly limited
down to the number of functions with a mutable reference.

The improvements are not limited to developer experience, but also gives the
compiler further information and context. The more the compiler knows about the
program flow, the more optimisations it can perform to speed up the program or
make it more memory efficient.

One could argue that C allows the programmer to perform these optimisations
by hand, but this requires a massive amount of platform-specific knowledge that
not every programmer is ready to delve into. We would also argue that it is hard,
almost impossible for a programmer to rival the performance of code generated by
a compiler.

36

6
Evaluation

In this chapter, we present how we evaluate our implementation. First, we present
the tools which are used in the process. The chapter then continues with describing
the tests we performed to verify that our implementation works according to the
Bluetooth specification, as well as describing the results of the tests. We continue
to describe how well our implementation performs, and detail what measurements
we evaluated. Lastly, we present the results of the performance testing, compare it
to Mynewt’s BLE implementation and discuss the results.

6.1 Test Setup
Testing of embedded devices is non-trivial since one usually does not have an abun-
dance of resources left over on the chip to run debugging code. The nRF52 develop-
ment kit does have some extra debugging features on the board, but not for testing
wireless communication. Instead, Nordic Semiconductor provides a special software
[30] that can be loaded onto a nRF52 board and turns it into a Bluetooth sniffer
that listens for and collects wireless traffic. The sniffer supports feeding this data
into Wireshark [31], a well-known protocol and traffic analyser and debugging tool.

We use a BLE debugging software called LightBlue [32] as a peer device for
testing of BLE connections. It listens for nearby devices in advertising state and
starts a connection with our development board acting as a slave. This allows us to
start a connection with our board and to repeat the process in a deterministic way.

In summary, we have two nRF52 boards: one with TockOS and our driver
loaded onto it, the other one runs the Nordic BLE sniffer and is connected to a
laptop running Wireshark. That same laptop starts a connection via the LightBlue
software.

6.2 Validation
This section describes the task of verifying that our implementation meets what is
stated in the Bluetooth specification. As such, we state six requirements that the
implementation must meet and design tests with these requirements in mind. The
behaviour of the device running our BLE stack is compared against these require-
ments.

Printing the current state and value of variables at different stages during pro-
gram execution is a straightforward debugging technique. This is a time-expensive

37

6. Evaluation

operation, especially on hardware with slower IO, like the nRF52 board. Particu-
larly during time-critical periods, a print operation can delay program execution to
such an extent that we end up well outside the timing constraints required by the
Bluetooth specification. Outside of the timing critical sections of execution, printing
is very useful and is well-utilised by us.

There are also examples of when printing can be useful even in time-critical
periods. One such example is when we want to debug why the device does not
establish a connection with another device. In this case, a first step could be to
print a message when the device receives a connection request. Since we are only
interested in whether or not the connection request is received correctly and do not
care for the establishing of a connection, we print upon reception of a connection
request and ignore the deadline.

When debugging program flows in situations when the device must hold its
deadlines, we use other means to monitor its behaviour. This is where we use the
Nordic nRF Sniffer together with Wireshark, which parses and interprets the data
sent from the sniffer and displays it in a human-friendly format. The sniffer also
provides an option to follow a selected device, i.e. it shows only the traffic to and
from the device, and tries to switch channel in the same way as the device it is
following should do. However, in the same way as our device has the possibility of
missing a packet due to wireless interference, the sniffer will inevitably miss some
packets. This causes nothing but minor issues for us, but it has to be taken into
account when analysing the traffic.

The requirements that our implementation must meet to fulfil our goals are the
following:

1. The device advertises correctly.

2. The device replies to scan requests after 150 µs.

3. The device establishes a connection when a connection request is received.

4. The device replies to the master on the correct channel.

5. The device should change channel map if the master updates it.

6. The device listens for packets on a channel for no longer than the timeout.

All of the requirements stated above are further elaborated upon below.

The device advertises correctly
Our definition of advertising correctly is that an advertising device transmits adver-
tising packets on all the primary advertising channels in increasing channel index
order, i.e. 37, 38, 39. We verify this requirement by running the device as an adver-
tiser and check that it indeed transmits on each channel in sequence. For this task,
we use both the sniffer and printing, as we cannot trust any of them on their own:
the sniffer might miss packets, while printing does not actually ensure that a packet
was sent.

38

6. Evaluation

Figure 6.1: Screenshot from Wireshark showing when the device acts as an adver-
tiser. The device, called "TockOS", is sending packets on all the primary advertising
channels in the right order, as the green area shows. It also successfully replies to a
scan request from another device, within roughly 150 µs, as the red area shows.

Advertising may not be a new functionality but is still needed to create a con-
nection. As we edit large chunks of the code, it is essential to make sure that we
maintain the existing functionality.

When our device advertises, its behaviour meets our definition of advertising
correctly. In Figure 6.1 we can see that the device indeed advertises on channel 37,
38, 39, and in that order.

The device replies to scan requests after 150µs

The second requirement includes that when an advertiser receives a scan request
from any other device, it shall respond with a scan response within 150 µs.

The scan response is allowed to contain the same data as the advertising packet,
with an exception for the part that indicates what type of packet it is. This allows
us to create a simple test. We make the scan response contain the device name, and
remove it from the standard advertising data. The reason is that if the advertising
packet and the scan response look the same, there is no way of telling whether a
scanning device has received the scan response or is just showing that data from
the advertisement. A scanning device that is interested in learning the name of our
advertising device thus has to send a scan request and obtain the name from the
scan response.

We then let our device advertise at the same time as a computer runs LightBlue.
When the device name shows up in LightBlue, we conclude that the scan response
works according to the specification.

Figure 6.1 shows that the second requirement is met. Here the advertising device
receives a scan request and replies to it with a scan response. The time between the
request and the response is within reasonable limits around 150 µs.

39

6. Evaluation

Figure 6.2: Screenshot from Wireshark showing the start of a connection. The
upper red line highlights a packet in which the more data (MD)-bit is set, which is
shown as True in the second to last column. As the vertical green line shows, this
packet is received by the slave on channel 30. The slave does as expected and stays
on the channel until it has received another packet from the master.

The device establishes a connection when a connection re-
quest is received
As Section 2.4.2 explains, a connection is not established until a device has received
a data packet from its peer. Therefore, the test for this requirement includes both
that our device receives a connection request, receives a data packet from the master
and then replies to the latter.

To verify that our device can establish a connection in the slave role, we let
it start as an advertiser and send a connection request to it using LightBlue. We
monitor in Wireshark if the two devices start to send packets to each other.

Figure 6.2 shows the start of a connection. "Apple_21:4a:67" is a computer
running LightBlue and "f0:00:00:0f:0f:f0" is our nRF52 board. As the violet line
highlights, the computer sends a connection request to our device, which means
that the computer becomes master and our device becomes a slave. After they both
have entered the connection, the master is the first one to send a packet, to which
the slave replies. Therefore, we conclude that the third requirement is met.

The device replies to the master on the correct channel
This requirement includes the slave to be on the same channel as the master, as well
as replying to the packets. As Section 2.4 describes, a device can continue to send
on the same channel if it sets the MD-bit in the packet header. Therefore, the slave
must make sure not to switch its channel if this bit is set. The expected behaviour
of the slave is thus to stay on the same channel until the MD-bit is not set.

We use Wireshark to monitor if the slave replies to each of the master’s packets.
Afterwards, we print the channel we just transmitted on during a non-time critical
period. This allows us to verify that the transmission was sent on the expected
channel. We can also quickly find out if a failure of replying to the master is caused
by our device sending on the wrong channel or if it does not receive any packet from

40

6. Evaluation

the master.
Using Wireshark, we can see that when the slave receives a packet where the

More Data (MD)-bit is set, it stays on the channel and waits for another packet
from the master. When this second packet is received, the slave also replies to that
packet (see Figure 6.2). This shows that the MD-bit is respected and the connection
works as expected.

There are occasions when the slave does not reply to the master at all. Our
printing suggests that this is a result of that the slave has a timeout, i.e. has waited
without receiving and therefore moves to the next channel. The timeouts could be
either due to a packet loss or mistakes in our code. As the devices are relatively
close, the latter seems more likely.

Even though what is described above, the slave recovers from the missing packets
and continues to reply. Therefore, we still argue that the slave’s behaviour meets
this requirement.

The device should change channel map if the master updates
it

As the slave and the master rely on a combination of a channel selection algorithm
and a channel map to switch channel in the same way, both devices, of course, have
to use the same algorithm and channel map. As the slave includes in its advertising
packets what algorithm it wants, we only have to make sure that the two devices
are using the same channel map during the connection.

The channel map is, as Section 2.4.2 describes, included in the connection request
sent by the master, but it can also be changed during the connection. To do this,
the master sends a new channel map to the slave, as Figure 6.3 shows. The master
specifies in the same packet when the new channel map becomes valid.

We test that the above-mentioned channel map is noticed and respected by the
slave. This is easily done as we know from reading the packet both when the slave
is supposed to start using the new channel map and which channels the master
specifies as valid.

Using Wireshark, we can read the packet and use the same algorithm as the slave
just before and after the change of channel map to make sure that the transition
indeed takes place.

Another way to check would be to simply run the connection and assume that
is works if it does not terminate soon after a new channel map starts being used.
We find this way of testing to be less reliable as two channel maps can overlap. This
means that even after the slave starts using the new channel map, it might continue
to jump between channels that are valid according to the old channel map for a
while. Therefore the interesting part to test is the part where the old and the new
channel map does not overlap.

Our slave device successfully changes channel map as often as the master re-
quires, and therefore we conclude that this requirement is fulfilled.

41

6. Evaluation

Figure 6.3: This figure shows how the master informs the slave that they are about
to change channel map. The red line shows the packet that contains the new channel
map

The device listens for packets on a channel for no longer than
the timeout
A timeout means that our device has waited for a packet long enough and now
moves to the next channel. The reason for this behaviour is that if this is not done,
a device might miss the timing constraints specified in the Bluetooth specification.
This requirement has to be tested for the device both when it advertises and when
it is in a connection.

When the device is advertising, it should spend a maximum of 10 ms on each
channel (see Section 2.4). For a connection, this timing varies depending on param-
eters set by the master.

To test this, we run our device as an advertiser without starting receive mode,
while still starting the timeout. If we do not start receive mode, the radio will
timeout every time since no packets can be received. The idea is to check that
the radio still changes its channel while being unable to receive packets. Using
Wireshark, we can verify this behaviour.

After this test, we conclude that the timeout function indeed works for a device
in the advertising state.

Discussion
From our tests, it seems like the six requirements stated at the start of this sub-
section are indeed met. We see that an advertiser can both transmit packets in
the expected way and that it responds to scan requests. These two behaviours are
fundamental for a scannable advertiser. Also, even if it was not explicitly stated as a
requirement, the device continues to advertise after replying to a scan request. This
behaviour is vital for the functionality of the advertiser, as it would stop functioning
otherwise. Moreover, the ability for the device to advertise its existence is essen-
tial for other devices to send connection requests to it, as a device is not allowed
to send a connection request to another device from which it has not received an
advertisement.

During our test runs the advertiser has been stable, meaning we have not seen
any unexpected behaviour. We can, though, in some executions see that other de-
vices send scan requests to our advertising device during several advertising intervals

42

6. Evaluation

before they get any response. This is most likely due to the amount of traffic on the
2.4 GHz radio band. A greater amount of traffic means that the advertiser receives
more packets that it has no interest in, which could, for example, be advertising
packets from other advertisers. During the time our advertiser handles one such
packet, it will not receive any other packets and thus miss any scan request. Also, if
the received packet is not of interest, the device will move on to the next advertising
channel, meaning that any other device which wishes to send a scan request to our
device also has to change to the next channel, and wait for our device to send the
next advertisement.

As the only way a connection can be created is for the advertiser to receive a
connection request, the third requirement has to be fulfilled. Similar to the case of
scan requests, the slave tend to miss a couple of connection requests before it finally
receives one. As also this has to do with the reception mechanism, we assume that
the reason is the same as for scan requests.

Both the fourth and the fifth requirements state the needed behaviour for keeping
a connection alive, and as we have not spotted any cases in which the slave shows a
strange behaviour, we assume these to work without any difficulties.

The sixth and last requirement is critical for a connection to be possible. As
long as the master sends a data packet on each channel, and the slave receives this
packet, the timeout is not necessary. In that case, it is only used for lowering the
power consumption by allowing the slave to get idle if no more packets are to be
sent during the current connection event. On the other hand, if the slave fails to
receive the packet from the master, or if the master fails to send it, the timeout is
a crucial tool to force the slave to the next channel. This way, the slave can recover
from packet loss.

Even if our BLE implementation passes all the requirements we set up to validate
it, the slave device behaves oddly during the connection. At some point, it loses the
master device. Continuously, it tries to receive a packet from the master, but every
time it gets a timeout. We are not sure what is the underlying cause to this bug,
but the result seems to be that the slave has an offset to the master, which causes
it to start listening either too early or too late. This might suggest a bug in the
timeout mechanism, but we have not been able to prove this, nor have we found
any valid reason to discard the idea. We have not been able to find a pattern on
when the slave gives up on the master; often it happens after a couple of thousand
connection events, but sometimes the connection lives long enough for the event
counter to flip over and start counting again from zero, i.e., the connection lives for
more than 65 536 connection events.

Even in the light of the issue mentioned above, we claim that our design of the
minimal stack is reasonable. The design and implementation are related, but they
are different parts of the creation of software, and different implementations can be
created from the same design description. Therefore we argue that the fault lies in
our implementation rather than in the design itself. As the design is a construction
of our definition of a minimal stack, we argue that as the design fulfils our goals, so
does also the definition.

43

6. Evaluation

1 adv_params.itvl_max = 480;
2 adv_params.itvl_min = 300;

Listing 6: The parameters in Apache Mynewt changed by us to better match the
configuration used by Tock.

6.3 Performance Testing
In this section, we describe the part of our evaluation that includes measurable
values. The tests are designed to check the performance of our implementation.
This is of interest even if the goal of this master’s thesis does not state anything
regarding the effectiveness of our implementation, as embedded devices have to be
both reliable and concerned of how they use their limited energy.

We have chosen to analyse three attributes:

1. Reliability - how large percentage of the packets sent by the master is received

2. Power consumption - the energy consumed by the nRF52 board

3. Timing - closely related to the reliability of the system. The timing is measured
as how soon after reception of a packet from a master the slave replies.

Measurements of one implementation have to be compared with others, as they
are not very meaningful on their own. Therefore, we use the same tests to evaluate
the performance of Apache Mynewt BLE implementation as we do for our implemen-
tation. This allows us to compare the two, and to see how well our implementation
stands against that of another open source operating systems.

We are not discussing how differences in the results might be related to the
programming language used by the two operating systems. Even though this is an
interesting aspect to investigate, the BLE implementations are quite different and
are also running on different operating systems, making a direct comparison possibly
unfair and difficult. The results are presented and discussed in Section 6.3.5.

6.3.1 Setup
For Apache Mynewt’s NimBLE, we use one of their provided examples, namely
’bleprph’. By observing the nRF52 board’s behaviour when it runs this code, we
can see that the example’s advertising intervals are much shorter than those of our
implementation. As this can affect the overall power consumption, giving an unfair
comparison, we change these parameters to match those used by us, as is seen in
Listing 6. After this preparation, we perform the measurements of performance,
power consumption, and timing.

6.3.2 Reliability
We measure the reliability of our implementation as the percentage of the packets
sent that a slave device receives. This measurement is only conducted after the

44

6. Evaluation

device has created a connection, i.e. from the first data channel packet sent by the
master device.

In a connection, both the master and the slave counts how many connection
events have passed. As the master should send at least one packet in each connection
event, we know that the number of packets sent will not be less than the number
of connection events. More packets might have been sent, as several packets can
be sent within the same connection event. These extra packets are included in
the calculation by counting the number of times two packets have the same event
counter, as this means that the packets have been sent during the same connection
interval. From this, we get the following expression:

Prec

Ecount + Pdoublet

, where Prec is the number of packets received by the slave, Ecount the connection
event counter, and Pdoublet the number of packets that shares the same event counter.

We run the connection for an arbitrary number of connection events, as the
percentage is not directly related to the number of counted packets and that we
assume that the failure of receiving packets are evenly spread out over the connection
event.

If one had any reason to believe that packet loss was, for example, more likely
to happen later during a connection, it would have been better to only count the
number of packets during a predefined number of connection events. As we have
not noticed any trend in packet loss, we do not have such a reason.

Results The results of our reliability are measured using Wireshark. The reason
for this is to measure both the master and the slave from an equal point of view and
to minimise the adverse effect measurements on the board could have.

The results are presented as the percentage of packets missed by the slave, as
we assume that the master succeeds in its task to send a packet in each connection
event, and also due to it is the slave that runs our code.

We have to account for that we cannot know why a packet is not showing up in
Wireshark. Either the sniffer could have just missed it, or the master never sent it.
We counter this by counting the number of packets that sniffer claims not to have
received from the master, and subtract this number from the number of packets the
sniffer has not received from the slave. By doing this, we only include the number
of packets to which the slave actually could reply.

Our results for packet loss for Tock: 1.56 %, and Mynewt: 1.37 %.

6.3.3 Power Consumption
The power consumption is not directly measured, rather we measure the current.
This should not be done when that nRF52 board is powered using USB, and therefore
we connect the board to an external power source instead. This allows for a voltage
level between 1.7 V and 3.6 V, compared to 3.3 V when USB is used. We choose a
voltage of 3.0 V.

45

6. Evaluation

Before the current can be measured, the board has to go through some prepa-
ration steps. The nRF52 board has a connector with two pins that are used for
current measurements. A solder bridge has to be cut to enable these pins, as the
current normally flows over this bridge. After this is done, another solder bridge has
to be shorted to allow it to be connected to an external power supply.

As we are using an oscilloscope, we also have to add a 10 Ω resistor between the
two pins of the connector mentioned above, as this enables to measure the voltage
drop over the resistor.

After the setup, we calculate the current as

I = Udrop

R

where Udrop is the voltage drop over a resistor with resistance R.
From this, we can derive the power usages in watt as

P = I · Usupplied

where Usupplied is the voltage level from the external power supply.
The measurements are done separately for advertising and connection. Using the

oscilloscope, we collect data points representing the voltage drop during a specific
period. For advertising, we choose to measure over a whole advertising event, during
the part of the interval when the radio is active (TX/RX) and during a period when
the radio is idle.

As a connection event can vary between runs, we choose to collect data over
a predefined number of connection events. We then calculate the average power
consumption based on this data.

Another factor that could affect the power consumption is the packet length.
A larger packet will contain more data, causing the radio to consume more power
while transmitting this packet. Due to this, we check that the packet length is the
same for both Tock and Mynewt.

Results The result from the measurements sometimes gave us negative values. As
it does not make sense to include negative values when calculating the average and
also to get results that are comparable with those Nilsson and Adolfsson got last
year, we choose to do the same as they did and set all negative values to zero.

As can be seen in Figure 6.4, TX is more power consuming than RX. The
measurements also reveal that when the radio switches from TX to RX mode, the
power consumption drops to around 10 mW, while going back from RX to RX only
yields a drop to roughly 30 mW. This is due to our design, in RX an END event
marks the end of the reception, while in TX the module waits until a DISABLE event
occurs. Since a DISABLE event always comes later than an END event (see Figure 5.1
this could account for some of the timing difference. Also, due to hardware reasons,
it takes longer for the hardware radio to transition from TX to DISABLE than from
RX to DISABLE [2]. These two reasons together could provide an explanation why
the hardware module is ready to handle the event faster after an RX than after

46

6. Evaluation

0

20

40

60

0 1 2

Time (ms)

P
o
w

e
r

c
o

n
s
u
m

p
ti
o
n
 (

m
W

)

Figure 6.4: Graph showing Tock’s power consumption during its active time period
of an advertising event. The higher peaks (the first, third and fifth) represents when
the radio is in TX mode, while the lower peaks (the second, fourth and sixth) is times
when the radio is in RX mode. The average value is highlighted in orange.

TX and might explain why the power consumption does not reach the bottom in
between these events.

We can also see that compared to the BLE implementation from last year, our
implementation has increased the power consumption during advertising in Tock.
Nilsson and Adolfsson present that their implementation measure 1.39 mW during
idle time, 27.67 mW for the transmission and 1.72 mW in total. This is compared
to our 1.73 mW, 36.35 mW and 1.83 mW. One probable reason is that as we have
added listening to the advertising event the time the radio is doing useful work has
been extended. Also, Nilsson and Adolfsson turned off the radio when it was not
used, which further lowers the power consumption.

Our measurements of the advertiser show that the BLE implementation in Tock
beats that of Mynewt both in the test for idle power consumption and power con-
sumption during an entire advertising interval, as shown in Figure 6.5. On the other
hand, Mynewt’s power consumption during a period of transceiving (TX and RX)
is about 36% of that of Tock’s.

As an advertising interval is a combination of the transceiving period and a
period when the radio is idle, the power consumption during these two periods
directly affects the power consumption during the advertising interval. The idle time
is much larger than the period of transceiving, and therefore it is not surprising to

47

6. Evaluation

Idle Advertising Interval Advertisement

P
o
w

e
r

c
o
n
s
u
m

p
ti
o
n
 (

m
W

)

0
1
0

2
0

3
0

4
0

TockOS

Mynewt

1.7253276

4.429149

1.8282678

4.498581

36.35466

12.487005

Figure 6.5: Bar chart comparing power consumption of Apache Mynewt and
TockOS during different events in advertising.

see that Tock has a lower power consumption during an advertising interval.
If the idle time was to be shortened, the transceiving period has a more signif-

icant impact on the result, which in our case would increase Tock’s average power
consumption during an advertising interval.

Comparing the power consumption during idle time and a transceiving period
indicates the importance of the idle time periods. As embedded devices want to
minimise their power consumption, it is of utmost importance for them to strive for
maximising their idle time. Of course, if a device has a valid reason to communicate
more often, it also has to keep the advertising intervals shorter, resulting in less idle
time and higher power consumption.

Except for the periods spent in TX, RX and idle, other things can affect the
power consumption. One such thing is the number of scan requests the device re-
ceives, as these require a scan response to be sent. Due to this, in our measurements,
we choose only to include advertising intervals in which the advertiser received no
scan requests.

Also, the test of a connection shows that our implementation has higher power
consumption during the period of transceiving compared to Mynewt, while measur-
ing during a whole connection interval shows a similar power consumption between
the two operating systems.

The results show that our implementation in Tock has a slightly lower power
consumption during the transceiving period in a connection than when it advertises.
Most likely due to during an advertising interval the device transmits three times

48

6. Evaluation

Connection Interval Connection Event

P
o
w

e
r

c
o
n
s
u
m

p
ti
o
n
 (

m
W

)

0
1
0

2
0

3
0

4
0

TockOS

Mynewt

4.983393 4.914915

34.48173

14.077542

Figure 6.6: Bar chart comparing power consumption of Apache Mynewt and
TockOS during different events in connection.

more packets than during a connection interval, assuming that the MD-bit is never
set.

Comparing the results over an advertising interval and a connection interval,
we can see that the power consumption increases for both the operating systems
when the device enters a connection. For Tock, this increase is quite drastic, as it is
more than doubled (roughly 273% of that during advertising). Even if an advertising
interval differs significantly from a connection interval, comparing the measurements
from the two could provide a better understanding of the importance of idle periods.
This is clear from the results for Tock: during the advertising, the idle time is around
280 ms, while for the connection it is around 15 ms. This means that even if the
power consumption during transceiving in a connection event is lower than that for
the advertising, a connection has higher overall power consumption.

One needs to keep in mind that both the connection interval and thereby the
number of sent packets might vary between runs. Therefore, we only include con-
nection intervals where precisely one packet was sent from each peer. Like for the
idle time during advertising, a longer connection interval will mean a long idle time,
which is beneficial for the device’s power consumption.

6.3.4 Timing

If a slave is too quick or too slow at responding to a packet from the master device,
the communication might suffer. If the packet is sent too soon, the master device

49

6. Evaluation

149 150 151

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Figure 6.7: Bar chart comparing the ratio of packets received across the response
time for the packet. Extreme values are not included in the figure.

might not have prepared the radio for receiving, and thus the packet might be
missed. On the other hand, if the slave is too slow at responding, the master might
have given up on listening and moved on to the next channel.

From this, it is clear that the timing is of importance, and is a parameter that
we should evaluate. We choose to measure during connections only, since the way
the scheduling of response packets are done similarly in advertising and connection.
Also, if an advertiser on a few occasions fails to respond to a scan request at the
right time the result is not catastrophic. A connection can, on the other hand, be
terminated as a consequence of too many missed timings.

The timing is measured using Wireshark and is the time between the end of a
packet sent by the master and the start of the response from the slave.

Results Our results for timing measurements are presented in Figure 6.7. The
majority of the packets arrive at 150 µs, ± 1 µs. It is only a matter of ± 1 µs, but as
several parts of BLE are sensitive to small changes in timing, this could have a large
impact on the functionality of the implementation. One might be tricked to believe
that replying faster than the 150 µs would be a positive thing, but as explained in
Section 6.3.4, this is not the case.

There are also a couple of values in most of the runs that are much higher or
lower, for example at 4 294 966 717 µs (or roughly 4295 s). We are not sure why
these deviate so much from the expected value of 150 µs. One suggestion is that
this might be a misinterpretation by Wireshark or the sniffer. For the packets we
have investigated, the higher values have their CRC marked as invalid by Wireshark.
Also, the slave continues the communication with master after this packet, indicating
that the slave cannot have transmitted the packet thousands of seconds later than it
was supposed to transmit. For the lower values, we can see a similar trend, with the
difference that it varies if it is the slave or the master that sends a packet with invalid
CRC. Therefore, we do not fully trust the results that show a value that deviates
too much from the expected 150 µs and disregard them as errors in measurement.

50

6. Evaluation

6.3.5 Discussion
During the performance testing, we have observed both strengths and weaknesses
in our implementation.

The measuring of packet loss shows that Tock has a slightly higher packet loss
than Mynewt, but still, it is not unreasonably high. It is difficult to know the reason
behind this, but it might be due to timing issues or problem due to interference.
During the test we assume that the traffic on the 2.4 GHz band does not vary so
much that it will give an unfair testing environment, i.e., we assume that both the
operating systems suffered equally much from other traffic. Even so, a question arises
regarding if the test actually measures the reliability of the BLE implementation or
is a measure of how crowded the radio band is. Performing the measurements in
a calmer environment might have yielded a different result. Even so, the results
still show how well a device running the implementation can handle its current
environment, and therefore we still find the test to be reasonable. In either case, a
device which manages to communicate using wireless protocols even in the presence
of disturbance is highly desirable. This is both due to the cost of resending as well
as the impracticality with a too large performance drop as a result of interference
on the communication medium.

From our results of the power consumption, it is clear that our BLE implemen-
tation in Tock if far from optimal. If the power consumption is decreased during
periods of transceiving, the implementation will stand better against that of other
operating systems.

One possible explanation for Mynewt’s lower power consumption is that they
are using dynamic transmission power. We have not considered power consumption
during the implementation in Tock, and therefore the radio uses a default transmis-
sion power of 0 dBm. Adapting this value depending on signal strength, as done in
Mynewt, would result in improved energy efficiency.

In Figure 6.7 we see that almost 70% of the response packets manage to be sent
after exactly 150 µs, even if it the majority of the packets does not vary more than
±1 from that value. Our method of measuring cannot be guaranteed to provide an
exact value, neither does it give us an understanding of whether the value shown in
Wireshark is accurate or if it sometimes might be a bit off. Either way, one would
like to improve the percentage of times that the timing value is exactly 150 µs.

This result is a bit surprising. As we schedule a response with the same delay
each time, the difference shown in Wireshark could be due to a non-deterministic
behaviour in the program itself. During a connection, the slave should respond in
the same way each time, performing the same operations. Therefore, we found it
likely that the ±1 could be caused by rounding errors in Wireshark, even though
we cannot discard the fact that the values actually could be correct.

51

6. Evaluation

52

7
Conclusion

7.1 Conclusion

The Bluetooth specification describes a whole variety of functionality, some manda-
tory and other voluntary. This master’s thesis presents what we argue is the simplest
connection that can be created and maintained between two IoT devices. From this,
we derive a definition of the minimal Bluetooth Low Energy stack needed to enable
this simple connection.

To try out this definition, we realise it by implementing it in an operating system
for embedded devices. Out of several such operating systems we choose to use Tock
as our platform. This is a relatively new operating system, which is implemented
in the programming language Rust. Rust promises near C performance, and it is
therefore fascinating to see how well-suited it is for implementing a BLE stack.

Our design of the BLE stack is formed from both what is required to enable the
communication with another device, as well as what is suitable for Tock. Also, as
a small BLE stack, with support for only advertising, once existence or for finding
other devices, already existed, we aimed at keeping the changes to is at a minimum.

Our implementation introduces new functionality, but also requires some re-
structuring and optimisations of the existing code. The optimisations focus mostly
on how we can utilise the hardware to improve timings. We enable this by allowing
the control flow to be driven by interrupts from the hardware.

The first part of the evaluation tests that our implementation meets six different
requirements. Some of the requirements test that the device knows how to advertise,
as this is fundamental for a connection to be created. Other tests of the requirements
check so that the connection between our device and a master device works as defined
in the Bluetooth specification.

Even though the performance of the implementation is not directly related to
the goal of this master’s thesis the second part of the evaluation tests how well our
device performs compared to Mynewt, an operating system with a full BLE stack
implementation. The tests highlight that there is room for optimisation of the power
consumption.

As of today, our implementation of BLE has way too high power consumption
to run for extended periods of time with a battery as its only power source. The
transceiving period has to be improved upon for both during advertising and during
a connection for the implementation to be useful. Another way of improving the
overall power consumption is to turn off the radio for the device if it is not used
during long periods.

53

7. Conclusion

Even if there are things to improve upon, the implementation is shown to be
relatively reliable and hold the timings within the BLE specification, which indicates
that it has its advantages and might make a solid foundation from which to continue
the implementation.

7.2 Future Work
If one aims at building a full BLE stack for Tock, there is quite some work to be
done. Many features can be implemented without changing the design that Chapter
4 presents, while others require additional layers to be added. A natural first step
would be to improve upon the existing code for the advertising state and the slave,
and later include support for a scanner, an initiator and master of a connection.

Improvements would include both increasing support for handling a connection
after it has been established, as well as optimising the code to lower the power
consumption. For example, in the current implementation, the radio is always on.
As it is one of the most power consuming peripherals, devices that have much idle
time would benefit from turning it off when possible.

Adding support for different types of advertisements could also be a part of fu-
ture work, as it would allow for different types of advertisers, not only the scannable
and connectable as we have implemented.

Further, a logical next step would be to have the slave returning to advertising
after a connection is terminated. The termination could be triggered either voluntary
by any of the peers by sending a disconnect command, or after a device has waited for
an extended period without receiving any packets. It would be preferable if the slave
could handle both of these cases. As it is today, the slave device continuously tries
to receive packets from the master, even after the master has ended the connection.

54

Bibliography

[1] A. Levy, B. Campbell, B. Ghena, D. B. Giffin, P. Pannuto, P. Dutta, and
P. Levis, “Multiprogramming a 64kb computer safely and efficiently,” in Pro-
ceedings of the 26th Symposium on Operating Systems Principles, SOSP ’17,
(Shanghai, China), pp. 234–251, ACM, 2017. [Online]. Available: https:
//dl.acm.org/citation.cfm?doid=3132747.3132786, Accessed: 2018-04-05.

[2] Nordic Semiconductor, nRF52832 Objective Product Specification, Novem-
ber v0.6.3, Nordic Semiconductor, Nov. 2015. [Online]. Available: http:
//infocenter.nordicsemi.com/pdf/nRF52832_OPS_v0.6.3.pdf, Accessed:
2018-03-02.

[3] M. Honkanen, A. Lappetelainen, and K. Kivekas, “Low End Extension
for Bluetooth,” in Proceedings. 2004 IEEE Radio and Wireless Conference
(IEEE Cat. No.04TH8746), (Atlanta, GA, USA), pp. 199–202, IEEE, Sept
2004. [Online]. Available: http://ieeexplore.ieee.org/document/1389107/
?arnumber=1389107, Accessed: 2018-02-20.

[4] L. R. Wilhelmsson, M. M. Lopez, and D. Sundman, “NB-WiFi: IEEE 802.11
and Bluetooth Low Energy Combined for Efficient Support of IoT,” in 2017
IEEE Wireless Communications and Networking Conference (WCNC), (San
Francisco, CA, USA), pp. 1–6, IEEE, March 2017. [Online]. Available: http:
//ieeexplore.ieee.org/document/7925808/, Accessed: 2018-04-09.

[5] Bluetooth Special Interest Group, “SIG introduces Bluetooth Low Energy wire-
less technology, the next generation of Bluetooth wireless technology,” 2009.
[Online]. Available: https://www.bluetooth.com/news/pressreleases/
2009/12/17/sig-introduces-bluetooth-low-energy-wireless-
technologythe-next-generation-of-bluetooth-wireless-technology,
Accessed: 2018-02-20.

[6] N. Diakopoulos and S. Cass, “The Top Programming Languages 2017 - IEEE
Spectrum,” 2017. [Online]. Available: https://spectrum.ieee.org/static/
interactive-the-top-programming-languages-2017, Accessed: 2018-02-
21.

[7] F. Nilsson and N. Adolfsson, A Rust-based Runtime for the In-
ternet of Things. Master’s thesis, Department of Computer Sci-
ence and Engineering, Chalmers University of Technology and Uni-
versity of Gothenburg, Gothenburg, Sweden, 2017. [Online]. Avail-

55

https://dl.acm.org/citation.cfm?doid=3132747.3132786
https://dl.acm.org/citation.cfm?doid=3132747.3132786
http://infocenter.nordicsemi.com/pdf/nRF52832_OPS_v0.6.3.pdf
http://infocenter.nordicsemi.com/pdf/nRF52832_OPS_v0.6.3.pdf
http://ieeexplore.ieee.org/document/1389107/?arnumber=1389107
http://ieeexplore.ieee.org/document/1389107/?arnumber=1389107
http://ieeexplore.ieee.org/document/7925808/
http://ieeexplore.ieee.org/document/7925808/
https://www.bluetooth.com/news/pressreleases/2009/12/17/sig-introduces-bluetooth-low-energy-wireless-technologythe-next-generation-of-bluetooth-wireless-technology
https://www.bluetooth.com/news/pressreleases/2009/12/17/sig-introduces-bluetooth-low-energy-wireless-technologythe-next-generation-of-bluetooth-wireless-technology
https://www.bluetooth.com/news/pressreleases/2009/12/17/sig-introduces-bluetooth-low-energy-wireless-technologythe-next-generation-of-bluetooth-wireless-technology
https://spectrum.ieee.org/static/interactive-the-top-programming-languages-2017
https://spectrum.ieee.org/static/interactive-the-top-programming-languages-2017

Bibliography

able: http://studentarbeten.chalmers.se/publication/250074-a-rust-
based-runtime-for-the-internet-of-things, Accessed: 2018-03-28.

[8] Nordic Semiconductor, “nRF52832.” [Online]. Available: https://
www.nordicsemi.com/eng/Products/Bluetooth-low-energy/nRF52832, Ac-
cessed: 2018-05-01.

[9] Nordic Semiconductor, “nRF52 Series SoC.” [Online]. Available: https://www.
nordicsemi.com/Products/nRF52-Series-SoC, Accessed: 2018-05-01.

[10] K. Klues, V. Handziski, C. Lu, A. Wolisz, D. Culler, D. Gay, and P. Levis,
“Integrating concurrency control and energy management in device drivers,”
in Proceedings of Twenty-first ACM SIGOPS Symposium on Operating Sys-
tems Principles, SOSP ’07, (Stevenson, Washington, USA), pp. 251–264, ACM,
2007. [Online]. Available: http://doi.acm.org/10.1145/1294261.1294286,
Accessed: 2018-03-23.

[11] K. Townsend, C. Cufí, Akiba, and R. Davidson, Getting Started
with Bluetooth Low Energy: Tools and Techniques for Low-Power Net-
working. Sebastopol, CA, USA: O’Reilly Media, 2014. [Online].
Available: https://www.safaribooksonline.com/library/view/getting-
started-with/9781491900550/, Accessed: 2018-02-28.

[12] Bluetooth Special Interest Group, Bluetooth Core Specification, vol. 6.
5 ed., Dec 2016. [Online]. Available: https://www.bluetooth.
org/DocMan/handlers/DownloadDoc.ashx?doc_id=421043&_ga=2.
173440995.1790814702.1512399515-1514272347.1510473596,https:
//www.bluetooth.com/specifications/bluetooth-core-specification,
Accessed: 2017-12-04.

[13] Contiki, “Contiki: The Open Source OS for the Internet of Things,” 2012.
[Online]. Available: http://contiki-os.org, Accessed: 2018-04-05.

[14] P. Levis, S. Madden, J. Polastre, R. Szewczyk, K. Whitehouse, A. Woo, D. Gay,
J. Hill, M. Welsh, E. Brewer, and D. Culler, “Tinyos: An operating system
for sensor networks,” in Ambient Intelligence (W. Weber, J. M. Rabaey, and
E. Aarts, eds.), pp. 115–148, Berlin, Heidelberg: Springer Berlin Heidelberg,
2005. [Online]. Available: https://link.springer.com/chapter/10.1007/3-
540-27139-2_7, Accessed: 2018-04-05.

[15] Apach Mynewt, “Apache Mynewt,” 2017. [Online]. Available: https://
mynewt.apache.org, Accessed: 2018-04-05.

[16] Gavin Jefferies, Justin Mclean, David G. Simmons et al., “apache/mynewt-
core: An OS to build, deploy and securely manage billions of devices.” [Online].
Available: https://github.com/apache/mynewt-core, Accessed: 2018-05-23.

[17] Apache Mynewt, “BLE Introduction.” [Online]. Available: https://mynewt.
apache.org/network/ble/ble_intro/, Accessed: 2018-05-23.

56

http://studentarbeten.chalmers.se/publication/250074-a-rust-based-runtime-for-the-internet-of-things
http://studentarbeten.chalmers.se/publication/250074-a-rust-based-runtime-for-the-internet-of-things
https://www.nordicsemi.com/eng/Products/Bluetooth-low-energy/nRF52832
https://www.nordicsemi.com/eng/Products/Bluetooth-low-energy/nRF52832
https://www.nordicsemi.com/Products/nRF52-Series-SoC
https://www.nordicsemi.com/Products/nRF52-Series-SoC
http://doi.acm.org/10.1145/1294261.1294286
https://www.safaribooksonline.com/library/view/getting-started-with/9781491900550/
https://www.safaribooksonline.com/library/view/getting-started-with/9781491900550/
https://www.bluetooth.org/DocMan/handlers/DownloadDoc.ashx?doc_id=421043&_ga=2.173440995.1790814702.1512399515-1514272347.1510473596, https://www.bluetooth.com/specifications/bluetooth-core-specification
https://www.bluetooth.org/DocMan/handlers/DownloadDoc.ashx?doc_id=421043&_ga=2.173440995.1790814702.1512399515-1514272347.1510473596, https://www.bluetooth.com/specifications/bluetooth-core-specification
https://www.bluetooth.org/DocMan/handlers/DownloadDoc.ashx?doc_id=421043&_ga=2.173440995.1790814702.1512399515-1514272347.1510473596, https://www.bluetooth.com/specifications/bluetooth-core-specification
https://www.bluetooth.org/DocMan/handlers/DownloadDoc.ashx?doc_id=421043&_ga=2.173440995.1790814702.1512399515-1514272347.1510473596, https://www.bluetooth.com/specifications/bluetooth-core-specification
http://contiki-os.org
https://link.springer.com/chapter/10.1007/3-540-27139-2_7
https://link.springer.com/chapter/10.1007/3-540-27139-2_7
https://mynewt.apache.org
https://mynewt.apache.org
https://github.com/apache/mynewt-core
https://mynewt.apache.org/network/ble/ble_intro/
https://mynewt.apache.org/network/ble/ble_intro/

Bibliography

[18] Apache Mynewt, “Bluetooth Low Energy 4.2 - Apache Mynewt.” [Online].
Available: https://mynewt.apache.org/pages/ble/, Accessed: 2018-05-23.

[19] Apache Mynewt, “Apache Mynewt.” [Online]. Available: https://mynewt.
apache.org, Accessed: 2018-05-23.

[20] Apache Mynewt, “apache/mynewt-nimble.” [Online]. Available: https://
github.com/apache/mynewt-nimble, Accessed: 2018-05-23.

[21] Apache Mynewt, “apache/mynewt-nimble.” [Online]. Avail-
able: https://github.com/apache/mynewt-nimble/tree/
f6bd8dc1f496557523697825f806d22bf73acb21/nimble/controller/src,
Accessed: 2018-05-23.

[22] Apache Mynewt, “apache/mynewt-nimble.” [Online]. Avail-
able: https://github.com/apache/mynewt-nimble/blob/
f6bd8dc1f496557523697825f806d22bf73acb21/nimble/controller/src/
ble_ll.c, Accessed: 2018-05-23.

[23] A. Dunkels, B. Gronvall, and T. Voigt, “Contiki - a lightweight and flexible op-
erating system for tiny networked sensors,” in 29th Annual IEEE International
Conference on Local Computer Networks, (Tampa, FL, USA, USA), pp. 455–
462, IEEE, Nov 2004. [Online]. Available: http://ieeexplore.ieee.org/
document/1367266/, Accessed: 2018-04-03.

[24] Contiki, “Contiki Hardware.” [Online]. Available: http://contiki-os.org/
hardware.html, Accessed: 2018-04-03.

[25] M. Spörk, IPv6 over Bluetooth Low Energy using Contiki. Master’s thesis,
Institute for Technical Informatics, Graz University of Technology, Graz, Aus-
tria, 2016. [Online]. Available: https://michaelspoerk.com/wp-content/
uploads/2017/11/IPv6-over-Bluetooth-Low-Energy-using-Contiki.pdf,
Accessed: 2018-06-03.

[26] S. Akhshabi and C. Dovrolis, “The evolution of layered protocol stacks leads
to an hourglass-shaped architecture,” SIGCOMM Comput. Commun. Rev.,
vol. 41, pp. 206–217, Aug. 2011.

[27] Nieminen et al., “IPv6 over BLUETOOTH(R) Low Energy,” RFC 7668, IETF,
July 1995.

[28] Bluetooth Special Interest Group, Bluetooth Core Specification, vol. 1.
5 ed., Dec 2016. [Online]. Available: https://www.bluetooth.
org/DocMan/handlers/DownloadDoc.ashx?doc_id=421043&_ga=2.
173440995.1790814702.1512399515-1514272347.1510473596,https:
//www.bluetooth.com/specifications/bluetooth-core-specification,
Accessed: 2017-12-04.

[29] Bluetooth Special Interest Group, Bluetooth Core Specification, vol. 3.
5 ed., Dec 2016. [Online]. Available: https://www.bluetooth.

57

https://mynewt.apache.org/pages/ble/
https://mynewt.apache.org
https://mynewt.apache.org
https://github.com/apache/mynewt-nimble
https://github.com/apache/mynewt-nimble
https://github.com/apache/mynewt-nimble/tree/f6bd8dc1f496557523697825f806d22bf73acb21/nimble/controller/src
https://github.com/apache/mynewt-nimble/tree/f6bd8dc1f496557523697825f806d22bf73acb21/nimble/controller/src
https://github.com/apache/mynewt-nimble/blob/f6bd8dc1f496557523697825f806d22bf73acb21/nimble/controller/src/ble_ll.c
https://github.com/apache/mynewt-nimble/blob/f6bd8dc1f496557523697825f806d22bf73acb21/nimble/controller/src/ble_ll.c
https://github.com/apache/mynewt-nimble/blob/f6bd8dc1f496557523697825f806d22bf73acb21/nimble/controller/src/ble_ll.c
http://ieeexplore.ieee.org/document/1367266/
http://ieeexplore.ieee.org/document/1367266/
http://contiki-os.org/hardware.html
http://contiki-os.org/hardware.html
https://michaelspoerk.com/wp-content/uploads/2017/11/IPv6-over-Bluetooth-Low-Energy-using-Contiki.pdf
https://michaelspoerk.com/wp-content/uploads/2017/11/IPv6-over-Bluetooth-Low-Energy-using-Contiki.pdf
https://www.bluetooth.org/DocMan/handlers/DownloadDoc.ashx?doc_id=421043&_ga=2.173440995.1790814702.1512399515-1514272347.1510473596, https://www.bluetooth.com/specifications/bluetooth-core-specification
https://www.bluetooth.org/DocMan/handlers/DownloadDoc.ashx?doc_id=421043&_ga=2.173440995.1790814702.1512399515-1514272347.1510473596, https://www.bluetooth.com/specifications/bluetooth-core-specification
https://www.bluetooth.org/DocMan/handlers/DownloadDoc.ashx?doc_id=421043&_ga=2.173440995.1790814702.1512399515-1514272347.1510473596, https://www.bluetooth.com/specifications/bluetooth-core-specification
https://www.bluetooth.org/DocMan/handlers/DownloadDoc.ashx?doc_id=421043&_ga=2.173440995.1790814702.1512399515-1514272347.1510473596, https://www.bluetooth.com/specifications/bluetooth-core-specification
https://www.bluetooth.org/DocMan/handlers/DownloadDoc.ashx?doc_id=421043&_ga=2.173440995.1790814702.1512399515-1514272347.1510473596, https://www.bluetooth.com/specifications/bluetooth-core-specification
https://www.bluetooth.org/DocMan/handlers/DownloadDoc.ashx?doc_id=421043&_ga=2.173440995.1790814702.1512399515-1514272347.1510473596, https://www.bluetooth.com/specifications/bluetooth-core-specification
https://www.bluetooth.org/DocMan/handlers/DownloadDoc.ashx?doc_id=421043&_ga=2.173440995.1790814702.1512399515-1514272347.1510473596, https://www.bluetooth.com/specifications/bluetooth-core-specification

Bibliography

org/DocMan/handlers/DownloadDoc.ashx?doc_id=421043&_ga=2.
173440995.1790814702.1512399515-1514272347.1510473596,https:
//www.bluetooth.com/specifications/bluetooth-core-specification,
Accessed: 2017-12-04.

[30] Nordic Semiconductor, “nRF Sniffer/Bluetooth Low Energy/Products/Home -
Ultra Low Power Wireless Solutions from NORDIC SEMICONDUCTOR.” [On-
line]. Available: https://www.nordicsemi.com/eng/Products/Bluetooth-
low-energy/nRF-Sniffer, Accessed: 2018-05-01.

[31] Wireshark, “Wireshark.” [Online]. Available: https://www.wireshark.org,
Accessed: 2018-05-01.

[32] Apple Inc., “LightBlue on the Mac App Store.” [Online]. Available: https://
itunes.apple.com/se/app/lightblue/id639944780?mt=12, Accessed: 2018-
05-01.

58

https://www.bluetooth.org/DocMan/handlers/DownloadDoc.ashx?doc_id=421043&_ga=2.173440995.1790814702.1512399515-1514272347.1510473596, https://www.bluetooth.com/specifications/bluetooth-core-specification
https://www.bluetooth.org/DocMan/handlers/DownloadDoc.ashx?doc_id=421043&_ga=2.173440995.1790814702.1512399515-1514272347.1510473596, https://www.bluetooth.com/specifications/bluetooth-core-specification
https://www.bluetooth.org/DocMan/handlers/DownloadDoc.ashx?doc_id=421043&_ga=2.173440995.1790814702.1512399515-1514272347.1510473596, https://www.bluetooth.com/specifications/bluetooth-core-specification
https://www.bluetooth.org/DocMan/handlers/DownloadDoc.ashx?doc_id=421043&_ga=2.173440995.1790814702.1512399515-1514272347.1510473596, https://www.bluetooth.com/specifications/bluetooth-core-specification
https://www.bluetooth.org/DocMan/handlers/DownloadDoc.ashx?doc_id=421043&_ga=2.173440995.1790814702.1512399515-1514272347.1510473596, https://www.bluetooth.com/specifications/bluetooth-core-specification
https://www.nordicsemi.com/eng/Products/Bluetooth-low-energy/nRF-Sniffer
https://www.nordicsemi.com/eng/Products/Bluetooth-low-energy/nRF-Sniffer
https://www.wireshark.org
https://itunes.apple.com/se/app/lightblue/id639944780?mt=12
https://itunes.apple.com/se/app/lightblue/id639944780?mt=12

	List of Figures
	List of Tables
	Introduction
	Problem Statement
	Contribution
	Delimitations
	Key Results
	Thesis Outline

	Background
	The Hardware Platform
	Rust
	Embedded Rust
	Ownership
	Enums and Associated Values

	Tock
	System Architecture
	Scheduling
	System Calls

	Bluetooth Low Energy
	The Link Layer
	Establishing a Connection

	Related Work
	Apache Mynewt
	Contiki

	Design
	Basic Flow
	Definition of a Minimal Stack
	Overview of System Architecture
	Layer Responsibilities and Communication
	Link Layer
	Hardware Module
	BLE capsule
	Discussion

	Hardware Module Events
	tx_end
	rx_start
	rx_end
	advertisement_done
	Discussion

	Implementation
	Overview
	Hardware Module
	Redesigning the Hardware Module

	Introducing a Link Layer
	Transmit/Receive Flow
	Transmit Advertisement
	Receive Advertisement

	Scheduling and Timeouts
	Connection Driver
	Developing with Rust
	Expressiveness
	Encapsulation
	Mutability
	Discussion

	Evaluation
	Test Setup
	Validation
	Performance Testing
	Setup
	Reliability
	Power Consumption
	Timing
	Discussion

	Conclusion
	Conclusion
	Future Work

	Bibliography

