
LoRa Communications
in Tock

TockWorld 6 - 2023
Branden Ghena



What is LoRaWAN?

● Open communication standard built with proprietary LoRa physical layer
○ LoRa owned by Semtech who makes transceiver chips, but some collaborations: STM32WL

● Low rate (1-20 kbps) and long range (~5 km)
○ With relatively low energy costs

● Most popular low-power wide-area network (LPWAN)
○ Target of academic research
○ Industry involvement in hardware and deployments



What is LoRa?

● LoRa is a proprietary long-range physical layer communication standard
○ Specifies how to send bits wirelessly
○ Uses Chirp Spread Spectrum (CSS) modulation: technique where frequency is varied linearly 

from lowest to highest in a channel

● Proprietary: owned
by Semtech who
makes radio chips
for it

○ Some collaboration
recently STM32WL



LoRaWAN network details



Tock Support

● Tracking issue: https://github.com/tock/tock/issues/2344

● Focus is on communicating with external transceivers, not built-in radios as 
they are much less common

○ Usual design is a microcontroller + Semtech SX1262 or SX127x over SPI

https://github.com/tock/tock/issues/2344


Existing support in Tock

● Work by Alistair that provides direct SPI access to userspace
○ Along with Libtock-C driver to control the LoRa transceiver over it
○ Raw LoRa packets

● Tock board support for SparkFun LoRa Thing Plus “expLoRaBLE”
○ Apollo3 microcontroller
○ SX1262 LoRa transceiver

● Work completed in Tock in June 2023
○ https://github.com/tock/tock/pull/3330
○ https://github.com/tock/tock/pull/3360
○ https://github.com/tock/libtock-c/pull/317

https://www.sparkfun.com/products/17506
https://github.com/tock/tock/pull/3330
https://github.com/tock/tock/pull/3360
https://github.com/tock/libtock-c/pull/317


Two false-starts for LoRa capsules

● April 2020
○ SPI: https://github.com/tock/tock/pull/1760
○ Work by Nitish Kulshrestha UCSD
○ Raw LoRa packets

● June 2021
○ I2C: https://github.com/tock/tock/pull/2615
○ Work by Olivia Weng UCSD
○ Specific for LoRa-MAC-in-C (LMIC) library

● Both ended up stale after student progress stopped

https://github.com/tock/tock/pull/1760
https://github.com/tock/tock/pull/2615


Takeaways

● Non-trivial to make something real (hence the false starts)

● Raw LoRa packets is relatively simple

● LoRaWAN protocol is more complex
○ Relying on userland library to do most of the lifting seems plausible
○ Generally not very time sensitive, which makes this realistic

● Deciding on a hardware board to support that is available would be useful
○ SparkFun expLoRaBLE board is a reasonable place to start



Bluetooth Low Energy (BLE) 
in Tock

TockWorld6 – Pat Pannuto



Basics of BLE

● Direct device-to-device communication
○ Usually: Computer to Thing
○ Smartphone to device, Laptop to device, etc.

● Focus on making the “Thing” really low energy
○ Push energy-intensive requirements onto “Computer”

● Devices (Computer or Thing) are servers with accessible fields
○ Not the traditional send-explicit-packets interface you might be expecting
○ Lower layers are still exchanging packets to make it work



What is Bluetooth?

A very large specification with a long history at this point

● 5.2 spec: 3256 pages

● Most “IoT” use cases can restrict to Vol 6: Low Energy Controller
○ Part A: Physical Layer Specification
○ Part B: Link Layer Specification
○ CSS: Part A: Data Types Specification
○ So ~250 pages



BLE Network Toplogy



What is Bluetooth

A very broad spec, which has logical chunks of features:

Complexity

Advertisements

Sending one-shot…

Receiving one-shot… 

Bi-directional / “connectable”...

Connections

P
er

ip
he

ra
l

C
en

tra
l

Forming connections…

Connection features / modes…
(L2CAP, GAP, GATT…)

Profiles…

BLE5 Features…

C
om

plexity



Formally, BLE defines its implementation into layers

● Host – Configuration and Server
○ GAP – Generic Access Profile

■ Configure advertising
○ GATT – Generic ATTribute profile

■ Configure connections

● HCI - Host Controller Interface

● Controller - Communication
○ Link Layer – send packets
○ RF and PHY – send bits



How does Tock implement (“implement”?) BLE?

Two major approaches:

● In-kernel
○ Written from scratch
○ HIL and syscall interfaces provide high-level operations

● Userspace
○ Use vendor / third-party stacks
○ Much (much) more complete implementation
○ Various attempts, only one has really ‘stuck’ to date



Userspace / Vendor BLE stacks 

● Most-used is Nordic’s “nrf-serialization” in libtock-c
○ BLE stack actually runs on remote MCU
○ BLE stack is all Nordic, black-box code

■ (almost certainly a C library)
○ High-level commands/events are passed across an RPC interface

● Several false-starts on integrating third-party / open-source on-device stacks
○ NimBLE, Apache MyNewt, probably others
○ Sad reality: There is not a great FOSS BLE stack
○ Those that exist are all large, complex C libraries



Tock’s in-kernel support

● kernel/src/hil/ble_advertising.rs
○ Interfaces to send and receive advertisements

■ One-shot only — i.e., cannot handle connectable advertisements
○ Implemented by two chips to-date:

■ chips/nrf52/src/ble_radio.rs
■ chips/apollo3/src/ble.rs

● capsules/extra/src/ble_advertising_driver.rs
○ Provides {start,stop} {advertising,scanning}

■ User-configurable intervals, but most timing/events handled in-kernel
○ Multiplexing

■ Each process is its own “BLE Device”, i.e. given unique static address



State of BLE development (or lack thereof)

● →

● →



Some cold reality: More features are big chunks

● Has not been a lot of demand for BLE
○ Or… we don’t see it because what we have is so far away that demand never bothers

● Perfect may be the enemy of the good here
○ Bluetooth HCI is famously bad, but inventing our own has not gone anywhere either

● We should consider leaning into getting smaller pieces working, at expense of 
generality in the short term

○ Perhaps an emphasis on ‘making it easy to be a simple peripheral’?


